Timezone: »
The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.
Author Information
Marcin Andrychowicz (Google Deepmind)
Misha Denil (DeepMind)
Sergio Gómez (Google DeepMind)
Matthew Hoffman (Google DeepMind)
David Pfau (Google DeepMind)
Tom Schaul (DeepMind)
Nando de Freitas (Google)
More from the Same Authors
-
2022 : Multi-step Planning for Automated Hyperparameter Optimization with OptFormer »
Lucio M Dery · Abram Friesen · Nando de Freitas · Marc'Aurelio Ranzato · Yutian Chen -
2022 Poster: Towards Learning Universal Hyperparameter Optimizers with Transformers »
Yutian Chen · Xingyou Song · Chansoo Lee · Zi Wang · Richard Zhang · David Dohan · Kazuya Kawakami · Greg Kochanski · Arnaud Doucet · Marc'Aurelio Ranzato · Sagi Perel · Nando de Freitas -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Active Offline Policy Selection »
Ksenia Konyushova · Yutian Chen · Thomas Paine · Caglar Gulcehre · Cosmin Paduraru · Daniel Mankowitz · Misha Denil · Nando de Freitas -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Offline RL »
Nando de Freitas -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Poster: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Spotlight: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 Poster: Disentangling by Subspace Diffusion »
David Pfau · Irina Higgins · Alex Botev · Sébastien Racanière -
2019 Workshop: Science meets Engineering of Deep Learning »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 : Welcoming remarks and introduction »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 Poster: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2019 Spotlight: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2018 : TBA 5 »
Nando de Freitas -
2018 : Invited Talk 5: Nando de Freitas »
Nando de Freitas -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2017 Workshop: Hierarchical Reinforcement Learning »
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Tutorial: Deep Learning: Practice and Trends »
Nando de Freitas · Scott Reed · Oriol Vinyals -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2016 Workshop: Continual Learning and Deep Networks »
Razvan Pascanu · Mark Ring · Tom Schaul -
2016 : Nando De Freitas »
Nando de Freitas -
2016 : Learning To Optimize »
Nando de Freitas -
2016 Poster: Unifying Count-Based Exploration and Intrinsic Motivation »
Marc Bellemare · Sriram Srinivasan · Georg Ostrovski · Tom Schaul · David Saxton · Remi Munos -
2015 : Information based methods for Black-box Optimization »
Matthew Hoffman -
2015 Workshop: Bayesian Optimization: Scalability and Flexibility »
Bobak Shahriari · Ryan Adams · Nando de Freitas · Amar Shah · Roberto Calandra -
2014 Workshop: Bayesian Optimization in Academia and Industry »
Zoubin Ghahramani · Ryan Adams · Matthew Hoffman · Kevin Swersky · Jasper Snoek -
2014 Poster: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2014 Spotlight: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Poster: Robust learning of low-dimensional dynamics from large neural ensembles »
David Pfau · Eftychios Pnevmatikakis · Liam Paninski -
2010 Spotlight: Probabilistic Deterministic Infinite Automata »
David Pfau · Nicholas Bartlett · Frank Wood -
2010 Poster: Probabilistic Deterministic Infinite Automata »
David Pfau · Nicholas Bartlett · Frank Wood -
2007 Spotlight: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra -
2007 Poster: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra