Timezone: »
Poster
Computational and Statistical Tradeoffs in Learning to Rank
Ashish Khetan · Sewoong Oh
For massive and heterogeneous modern data sets, it is of fundamental interest to provide guarantees on the accuracy of estimation when computational resources are limited. In the application of learning to rank, we provide a hierarchy of rank-breaking mechanisms ordered by the complexity in thus generated sketch of the data. This allows the number of data points collected to be gracefully traded off against computational resources available, while guaranteeing the desired level of accuracy. Theoretical guarantees on the proposed generalized rank-breaking implicitly provide such trade-offs, which can be explicitly characterized under certain canonical scenarios on the structure of the data.
Author Information
Ashish Khetan (University of Illinois Urbana-)
Sewoong Oh (University of Washington)
More from the Same Authors
-
2018 Poster: Robustness of conditional GANs to noisy labels »
Kiran Thekumparampil · Ashish Khetan · Zinan Lin · Sewoong Oh -
2018 Spotlight: Robustness of conditional GANs to noisy labels »
Kiran Thekumparampil · Ashish Khetan · Zinan Lin · Sewoong Oh -
2018 Poster: PacGAN: The power of two samples in generative adversarial networks »
Zinan Lin · Ashish Khetan · Giulia Fanti · Sewoong Oh -
2017 : New perspective from Blackwell's "comparisons of experiments" on generative adversarial networks »
Sewoong Oh -
2017 Poster: Optimal Sample Complexity of M-wise Data for Top-K Ranking »
Minje Jang · Sunghyun Kim · Changho Suh · Sewoong Oh -
2017 Poster: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Poster: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Spotlight: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Spotlight: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Poster: Discovering Potential Correlations via Hypercontractivity »
Hyeji Kim · Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2016 Poster: Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation »
Weihao Gao · Sewoong Oh · Pramod Viswanath -
2016 Poster: Achieving budget-optimality with adaptive schemes in crowdsourcing »
Ashish Khetan · Sewoong Oh -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Secure Multi-party Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2015 Poster: Collaboratively Learning Preferences from Ordinal Data »
Sewoong Oh · Kiran Thekumparampil · Jiaming Xu -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Provable Tensor Factorization with Missing Data »
Prateek Jain · Sewoong Oh -
2014 Poster: Extremal Mechanisms for Local Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Poster: Minimax-optimal Inference from Partial Rankings »
Bruce Hajek · Sewoong Oh · Jiaming Xu -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh