Timezone: »
We consider online learning algorithms that guarantee worst-case regret rates in adversarial environments (so they can be deployed safely and will perform robustly), yet adapt optimally to favorable stochastic environments (so they will perform well in a variety of settings of practical importance). We quantify the friendliness of stochastic environments by means of the well-known Bernstein (a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint for the Hedge setting and MetaGrad for online convex optimization) we show that the particular form of their data-dependent individual-sequence regret guarantees implies that they adapt automatically to the Bernstein parameters of the stochastic environment. We prove that these algorithms attain fast rates in their respective settings both in expectation and with high probability.
Author Information
Wouter Koolen (Centrum Wiskunde & Informatica, Amsterdam)
Peter Grünwald (CWI)
Tim van Erven (University of Amsterdam)
More from the Same Authors
-
2021 : Regret Minimization in Heavy-Tailed Bandits »
Shubhada Agrawal · Sandeep Juneja · Wouter Koolen -
2022 Poster: Luckiness in Multiscale Online Learning »
Wouter Koolen · Muriel F. Pérez-Ortiz -
2022 Poster: Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness »
Sarah Sachs · Hedi Hadiji · Tim van Erven · Cristóbal Guzmán -
2021 Poster: A/B/n Testing with Control in the Presence of Subpopulations »
Yoan Russac · Christina Katsimerou · Dennis Bohle · Olivier Cappé · Aurélien Garivier · Wouter Koolen -
2021 Poster: Optimal Best-Arm Identification Methods for Tail-Risk Measures »
Shubhada Agrawal · Wouter Koolen · Sandeep Juneja -
2019 Poster: PAC-Bayes Un-Expected Bernstein Inequality »
Zakaria Mhammedi · Peter Grünwald · Benjamin Guedj -
2019 Poster: Pure Exploration with Multiple Correct Answers »
Rémy Degenne · Wouter Koolen -
2019 Poster: Non-Asymptotic Pure Exploration by Solving Games »
Rémy Degenne · Wouter Koolen · Pierre Ménard -
2018 Poster: Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling »
Emilie Kaufmann · Wouter Koolen · Aurélien Garivier -
2017 : Peter Grünwald - A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity »
Peter Grünwald -
2017 Poster: Random Permutation Online Isotonic Regression »
Wojciech Kotlowski · Wouter Koolen · Alan Malek -
2017 Poster: Monte-Carlo Tree Search by Best Arm Identification »
Emilie Kaufmann · Wouter Koolen -
2017 Spotlight: Monte-Carlo Tree Search by Best Arm Identification »
Emilie Kaufmann · Wouter Koolen -
2016 : Safe Probability »
Peter Grünwald -
2016 : (Ir-)rationality of human decision making »
Peter Grünwald -
2016 Poster: MetaGrad: Multiple Learning Rates in Online Learning »
Tim van Erven · Wouter Koolen -
2016 Oral: MetaGrad: Multiple Learning Rates in Online Learning »
Tim van Erven · Wouter Koolen -
2015 : Discussion Panel »
Tim van Erven · Wouter Koolen · Peter Grünwald · Shai Ben-David · Dylan Foster · Satyen Kale · Gergely Neu -
2015 : Easy Data »
Peter Grünwald -
2015 : Learning Faster from Easy Data II: Introduction »
Tim van Erven -
2015 Workshop: Learning Faster from Easy Data II »
Tim van Erven · Wouter Koolen -
2015 Poster: Minimax Time Series Prediction »
Wouter Koolen · Alan Malek · Peter Bartlett · Yasin Abbasi Yadkori -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: Efficient Minimax Strategies for Square Loss Games »
Wouter M Koolen · Alan Malek · Peter Bartlett -
2014 Poster: Learning the Learning Rate for Prediction with Expert Advice »
Wouter M Koolen · Tim van Erven · Peter Grünwald -
2013 Workshop: Learning Faster From Easy Data »
Peter Grünwald · Wouter M Koolen · Sasha Rakhlin · Nati Srebro · Alekh Agarwal · Karthik Sridharan · Tim van Erven · Sebastien Bubeck -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht -
2013 Poster: The Pareto Regret Frontier »
Wouter M Koolen -
2012 Poster: Mixability in Statistical Learning »
Tim van Erven · Peter Grünwald · Mark Reid · Robert Williamson -
2012 Poster: Putting Bayes to sleep »
Wouter M Koolen · Dmitri Adamskiy · Manfred K. Warmuth -
2012 Spotlight: Putting Bayes to sleep »
Wouter M Koolen · Dmitri Adamskiy · Manfred K. Warmuth -
2011 Poster: Adaptive Hedge »
Tim van Erven · Peter Grünwald · Wouter M Koolen · Steven D Rooij -
2011 Poster: Learning Eigenvectors for Free »
Wouter M Koolen · Wojciech Kotlowski · Manfred K. Warmuth -
2007 Spotlight: Catching Up Faster in Bayesian Model Selection and Model Averaging »
Tim van Erven · Peter Grünwald · Steven de Rooij -
2007 Poster: Catching Up Faster in Bayesian Model Selection and Model Averaging »
Tim van Erven · Peter Grünwald · Steven de Rooij