Timezone: »
Poster
Mapping Estimation for Discrete Optimal Transport
Michaël Perrot · Nicolas Courty · Rémi Flamary · Amaury Habrard
We are interested in the computation of the transport map of an Optimal Transport problem. Most of the computational approaches of Optimal Transport use the Kantorovich relaxation of the problem to learn a probabilistic coupling $\mgamma$ but do not address the problem of learning the underlying transport map $\funcT$ linked to the original Monge problem. Consequently, it lowers the potential usage of such methods in contexts where out-of-samples computations are mandatory. In this paper we propose a new way to jointly learn the coupling and an approximation of the transport map. We use a jointly convex formulation which can be efficiently optimized. Additionally, jointly learning the coupling and the transport map allows to smooth the result of the Optimal Transport and generalize it to out-of-samples examples. Empirically, we show the interest and the relevance of our method in two tasks: domain adaptation and image editing.
Author Information
Michaël Perrot (University of Saint-Etienne)
Nicolas Courty (IRISA / University South Brittany)
Rémi Flamary (École Polytechnique)
Amaury Habrard (University of Saint-Etienne)
More from the Same Authors
-
2021 : Subspace Detours Meet Gromov-Wasserstein »
Clément Bonet · Nicolas Courty · François Septier · Lucas Drumetz -
2021 : Subspace Detours Meet Gromov-Wasserstein »
Clément Bonet · Nicolas Courty · François Septier · Lucas Drumetz -
2021 : Factored couplings in multi-marginal optimal transport via difference of convex programming »
Quang Huy TRAN · Hicham Janati · Ievgen Redko · Rémi Flamary · Nicolas Courty -
2021 : Factored couplings in multi-marginal optimal transport via difference of convex programming »
Quang Huy TRAN · Hicham Janati · Ievgen Redko · Rémi Flamary · Nicolas Courty -
2021 Poster: A PAC-Bayes Analysis of Adversarial Robustness »
Paul Viallard · Eric Guillaume VIDOT · Amaury Habrard · Emilie Morvant -
2021 Poster: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound »
Valentina Zantedeschi · Paul Viallard · Emilie Morvant · Rémi Emonet · Amaury Habrard · Pascal Germain · Benjamin Guedj -
2019 Workshop: Optimal Transport for Machine Learning »
Marco Cuturi · Gabriel Peyré · Rémi Flamary · Alexandra Suvorikova -
2019 Poster: Sliced Gromov-Wasserstein »
Titouan Vayer · Rémi Flamary · Nicolas Courty · Romain Tavenard · Laetitia Chapel -
2017 : Domain adaptation with optimal transport : from mapping to learning with joint distribution »
Rémi Flamary -
2017 : 6 x 3 minutes spotlights »
Rémi Flamary · Yongxin Chen · Napat Rujeerapaiboon · Jonas Adler · John Lee · Lucas R Roberts -
2017 Poster: Joint distribution optimal transportation for domain adaptation »
Nicolas Courty · Rémi Flamary · Amaury Habrard · Alain Rakotomamonjy -
2016 Poster: Optimal spectral transportation with application to music transcription »
Rémi Flamary · Cédric Févotte · Nicolas Courty · Valentin Emiya -
2015 Poster: Regressive Virtual Metric Learning »
Michaël Perrot · Amaury Habrard