Timezone: »

 
Poster
Variational Information Maximization for Feature Selection
Shuyang Gao · Greg Ver Steeg · Aram Galstyan

Tue Dec 06 09:00 AM -- 12:30 PM (PST) @ Area 5+6+7+8 #139 #None

Feature selection is one of the most fundamental problems in machine learning. An extensive body of work on information-theoretic feature selection exists which is based on maximizing mutual information between subsets of features and class labels. Practical methods are forced to rely on approximations due to the difficulty of estimating mutual information. We demonstrate that approximations made by existing methods are based on unrealistic assumptions. We formulate a more flexible and general class of assumptions based on variational distributions and use them to tractably generate lower bounds for mutual information. These bounds define a novel information-theoretic framework for feature selection, which we prove to be optimal under tree graphical models with proper choice of variational distributions. Our experiments demonstrate that the proposed method strongly outperforms existing information-theoretic feature selection approaches.

Author Information

Shuyang Gao (University of Southern California)
Greg Ver Steeg (USC Information Sciences Institute)
Aram Galstyan (USC Information Sciences Institute)

More from the Same Authors