Timezone: »
The cost of large scale data collection and annotation often makes the application of machine learning algorithms to new tasks or datasets prohibitively expensive. One approach circumventing this cost is training models on synthetic data where annotations are provided automatically. Despite their appeal, such models often fail to generalize from synthetic to real images, necessitating domain adaptation algorithms to manipulate these models before they can be successfully applied. Existing approaches focus either on mapping representations from one domain to the other, or on learning to extract features that are invariant to the domain from which they were extracted. However, by focusing only on creating a mapping or shared representation between the two domains, they ignore the individual characteristics of each domain. We hypothesize that explicitly modeling what is unique to each domain can improve a model's ability to extract domain-invariant features. Inspired by work on private-shared component analysis, we explicitly learn to extract image representations that are partitioned into two subspaces: one component which is private to each domain and one which is shared across domains. Our model is trained to not only perform the task we care about in the source domain, but also to use the partitioned representation to reconstruct the images from both domains. Our novel architecture results in a model that outperforms the state-of-the-art on a range of unsupervised domain adaptation scenarios and additionally produces visualizations of the private and shared representations enabling interpretation of the domain adaptation process.
Author Information
Konstantinos Bousmalis (Google Brain)
George Trigeorgis (Google)
Nathan Silberman (Google)
Dilip Krishnan (Google)
Dumitru Erhan (Google)
More from the Same Authors
-
2023 Poster: StoryBench: A Multifaceted Benchmark for Continuous Story Visualization »
Emanuele Bugliarello · H. Hernan Moraldo · Ruben Villegas · Mohammad Babaeizadeh · Mohammad Taghi Saffar · Han Zhang · Dumitru Erhan · Vittorio Ferrari · Pieter-Jan Kindermans · Paul Voigtlaender -
2020 Poster: Supervised Contrastive Learning »
Prannay Khosla · Piotr Teterwak · Chen Wang · Aaron Sarna · Yonglong Tian · Phillip Isola · Aaron Maschinot · Ce Liu · Dilip Krishnan -
2020 Poster: What Makes for Good Views for Contrastive Learning? »
Yonglong Tian · Chen Sun · Ben Poole · Dilip Krishnan · Cordelia Schmid · Phillip Isola -
2019 : Contributed Session - Spotlight Talks »
Jonathan Frankle · David Schwab · Ari Morcos · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · YiDing Jiang · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Sho Yaida · Muqiao Yang -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: Adversarial Robustness through Local Linearization »
Chongli Qin · James Martens · Sven Gowal · Dilip Krishnan · Krishnamurthy Dvijotham · Alhussein Fawzi · Soham De · Robert Stanforth · Pushmeet Kohli -
2019 Poster: Off-Policy Evaluation via Off-Policy Classification »
Alexander Irpan · Kanishka Rao · Konstantinos Bousmalis · Chris Harris · Julian Ibarz · Sergey Levine -
2019 Poster: High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks »
Ruben Villegas · Arkanath Pathak · Harini Kannan · Dumitru Erhan · Quoc V Le · Honglak Lee -
2019 Poster: A Benchmark for Interpretability Methods in Deep Neural Networks »
Sara Hooker · Dumitru Erhan · Pieter-Jan Kindermans · Been Kim -
2018 Poster: Large Margin Deep Networks for Classification »
Gamaleldin Elsayed · Dilip Krishnan · Hossein Mobahi · Kevin Regan · Samy Bengio -
2015 : Accepted Orals and Spotlights »
Seungwhan Moon · George Trigeorgis · Goker Erdogan · Tadahiro Taniguchi -
2013 Poster: Deep Neural Networks for Object Detection »
Christian Szegedy · Alexander Toshev · Dumitru Erhan -
2009 Poster: Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models »
Gideon S Mann · Ryan McDonald · Mehryar Mohri · Nathan Silberman · Dan Walker -
2009 Spotlight: Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models »
Gideon S Mann · Ryan McDonald · Mehryar Mohri · Nathan Silberman · Dan Walker