Timezone: »

Cooperative Graphical Models
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause

Tue Dec 06 09:00 AM -- 12:30 PM (PST) @ Area 5+6+7+8 #161 #None

We study a rich family of distributions that capture variable interactions significantly more expressive than those representable with low-treewidth or pairwise graphical models, or log-supermodular models. We call these cooperative graphical models. Yet, this family retains structure, which we carefully exploit for efficient inference techniques. Our algorithms combine the polyhedral structure of submodular functions in new ways with variational inference methods to obtain both lower and upper bounds on the partition function. While our fully convex upper bound is minimized as an SDP or via tree-reweighted belief propagation, our lower bound is tightened via belief propagation or mean-field algorithms. The resulting algorithms are easy to implement and, as our experiments show, effectively obtain good bounds and marginals for synthetic and real-world examples.

Author Information

Josip Djolonga (ETH Zurich)
Stefanie Jegelka (MIT)

Stefanie Jegelka is an X-Consortium Career Development Assistant Professor in the Department of EECS at MIT. She is a member of the Computer Science and AI Lab (CSAIL), the Center for Statistics and an affiliate of the Institute for Data, Systems and Society and the Operations Research Center. Before joining MIT, she was a postdoctoral researcher at UC Berkeley, and obtained her PhD from ETH Zurich and the Max Planck Institute for Intelligent Systems. Stefanie has received a Sloan Research Fellowship, an NSF CAREER Award, a DARPA Young Faculty Award, the German Pattern Recognition Award and a Best Paper Award at the International Conference for Machine Learning (ICML). Her research interests span the theory and practice of algorithmic machine learning.

Sebastian Tschiatschek (ETH Zurich)
Andreas Krause (ETH Zurich)

More from the Same Authors