Timezone: »
Despite the success of kernel-based nonparametric methods, kernel selection still requires considerable expertise, and is often described as a “black art.” We present a sophisticated method for automatically searching for an appropriate kernel from an infinite space of potential choices. Previous efforts in this direction have focused on traversing a kernel grammar, only examining the data via computation of marginal likelihood. Our proposed search method is based on Bayesian optimization in model space, where we reason about model evidence as a function to be maximized. We explicitly reason about the data distribution and how it induces similarity between potential model choices in terms of the explanations they can offer for observed data. In this light, we construct a novel kernel between models to explain a given dataset. Our method is capable of finding a model that explains a given dataset well without any human assistance, often with fewer computations of model evidence than previous approaches, a claim we demonstrate empirically.
Author Information
Gustavo Malkomes (Washington University)
Charles Schaff (Washington University in St. Louis)
Roman Garnett (Washington University in St. Louis)
More from the Same Authors
-
2022 : On Multi-information source Constraint Active Search »
Gustavo Malkomes · Bolong Cheng · Santiago Miret -
2022 : Group SELFIES: A Robust Fragment-Based Molecular String Representation »
Austin Cheng · Andy Cai · Santiago Miret · Gustavo Malkomes · Mariano Phielipp · Alan Aspuru-Guzik -
2022 : Panel »
Roman Garnett · José Miguel Hernández-Lobato · Eytan Bakshy · Syrine Belakaria · Stefanie Jegelka -
2022 Poster: Local Bayesian optimization via maximizing probability of descent »
Quan Nguyen · Kaiwen Wu · Jacob Gardner · Roman Garnett -
2020 Poster: Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees »
Shali Jiang · Daniel Jiang · Maximilian Balandat · Brian Karrer · Jacob Gardner · Roman Garnett -
2019 Poster: Cost Effective Active Search »
Shali Jiang · Roman Garnett · Benjamin Moseley -
2019 Poster: D-VAE: A Variational Autoencoder for Directed Acyclic Graphs »
Muhan Zhang · Shali Jiang · Zhicheng Cui · Roman Garnett · Yixin Chen -
2018 Poster: Efficient nonmyopic batch active search »
Shali Jiang · Gustavo Malkomes · Matthew Abbott · Benjamin Moseley · Roman Garnett -
2018 Spotlight: Efficient nonmyopic batch active search »
Shali Jiang · Gustavo Malkomes · Matthew Abbott · Benjamin Moseley · Roman Garnett -
2018 Poster: Automating Bayesian optimization with Bayesian optimization »
Gustavo Malkomes · Roman Garnett -
2015 : *Roman Garnett* Bayesian Quadrature: Lessons Learned and Looking Forwards »
Roman Garnett -
2015 Poster: Fast Distributed k-Center Clustering with Outliers on Massive Data »
Gustavo Malkomes · Matt J Kusner · Wenlin Chen · Kilian Q Weinberger · Benjamin Moseley -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2014 Poster: Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature »
Tom Gunter · Michael A Osborne · Roman Garnett · Philipp Hennig · Stephen J Roberts -
2013 Poster: Σ-Optimality for Active Learning on Gaussian Random Fields »
Yifei Ma · Roman Garnett · Jeff Schneider