Timezone: »
Poster
Learning Deep Parsimonious Representations
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun
In this paper we aim at facilitating generalization for deep networks while supporting interpretability of the learned representations. Towards this goal, we propose a clustering based regularization that encourages parsimonious representations. Our k-means style objective is easy to optimize and flexible supporting various forms of clustering, including sample and spatial clustering as well as co-clustering. We demonstrate the effectiveness of our approach on the tasks of unsupervised learning, classification, fine grained categorization and zero-shot learning.
Author Information
Renjie Liao (UofT)
Alex Schwing (University of Illinois at Urbana-Champaign)
Richard Zemel (Columbia University)
Raquel Urtasun (University of Toronto)
More from the Same Authors
-
2021 Spotlight: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 : Understanding Post-hoc Adaptation for Improving Subgroup Robustness »
David Madras · Richard Zemel -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2022 Poster: Implications of Model Indeterminacy for Explanations of Automated Decisions »
Marc-Etienne Brunet · Ashton Anderson · Richard Zemel -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Poster: Bridging the Imitation Gap by Adaptive Insubordination »
Luca Weihs · Unnat Jain · Iou-Jen Liu · Jordi Salvador · Svetlana Lazebnik · Aniruddha Kembhavi · Alex Schwing -
2021 Poster: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 Poster: A Contrastive Learning Approach for Training Variational Autoencoder Priors »
Jyoti Aneja · Alex Schwing · Jan Kautz · Arash Vahdat -
2021 Poster: Variational Model Inversion Attacks »
Kuan-Chieh Wang · YAN FU · Ke Li · Ashish Khisti · Richard Zemel · Alireza Makhzani -
2021 Poster: Class-agnostic Reconstruction of Dynamic Objects from Videos »
Zhongzheng Ren · Xiaoming Zhao · Alex Schwing -
2021 Poster: Perceptual Score: What Data Modalities Does Your Model Perceive? »
Itai Gat · Idan Schwartz · Alex Schwing -
2021 Poster: Identifying and Benchmarking Natural Out-of-Context Prediction Problems »
David Madras · Richard Zemel -
2020 : Contributed talks 5: Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification »
Elliot Creager · David Madras · Richard Zemel -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Raquel Urtasun - Science and Engineering for Self-driving »
Raquel Urtasun -
2019 Poster: Incremental Few-Shot Learning with Attention Attractor Networks »
Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel -
2019 Poster: SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Richard Zemel -
2019 Poster: Efficient Graph Generation with Graph Recurrent Attention Networks »
Renjie Liao · Yujia Li · Yang Song · Shenlong Wang · Will Hamilton · David Duvenaud · Raquel Urtasun · Richard Zemel -
2018 Poster: Learning Latent Subspaces in Variational Autoencoders »
Jack Klys · Jake Snell · Richard Zemel -
2018 Poster: Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer »
David Madras · Toni Pitassi · Richard Zemel -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 : Machine Learning for Self-Driving Cars, Raquel Urtasun, Uber ATG and University of Toronto »
Raquel Urtasun -
2017 : Contributed talk: Predict Responsibly: Increasing Fairness by Learning To Defer Abstract »
David Madras · Richard Zemel · Toni Pitassi -
2017 : Raquel Urtasun: Deep Learning for Self-Driving Cars »
Raquel Urtasun -
2017 Poster: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Spotlight: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: The Reversible Residual Network: Backpropagation Without Storing Activations »
Aidan Gomez · Mengye Ren · Raquel Urtasun · Roger Grosse -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Prototypical Networks for Few-shot Learning »
Jake Snell · Kevin Swersky · Richard Zemel -
2016 : Raquel Urtasun »
Raquel Urtasun -
2016 : Invited Talk - TorontoCity Benchmark: Towards Building Large Scale 3D Models of the World »
Raquel Urtasun -
2016 : Invited Talk: Towards Affordable Self-driving Cars (Raquel Urtasun, University of Toronto) »
Raquel Urtasun -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Constraints Based Convex Belief Propagation »
Yaniv Tenzer · Alex Schwing · Kevin Gimpel · Tamir Hazan -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Smooth and Strong: MAP Inference with Linear Convergence »
Ofer Meshi · Mehrdad Mahdavi · Alex Schwing -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2015 Poster: Exploring Models and Data for Image Question Answering »
Mengye Ren · Jamie Kiros · Richard Zemel -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials »
Shenlong Wang · Alex Schwing · Raquel Urtasun -
2014 Poster: Message Passing Inference for Large Scale Graphical Models with High Order Potentials »
Jian Zhang · Alex Schwing · Raquel Urtasun -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: On the Expressive Power of Restricted Boltzmann Machines »
James Martens · Arkadev Chattopadhya · Toni Pitassi · Richard Zemel -
2013 Poster: Latent Structured Active Learning »
Wenjie Luo · Alex Schwing · Raquel Urtasun -
2012 Poster: Collaborative Ranking With 17 Parameters »
Maksims Volkovs · Richard Zemel -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Session: Oral Session 1 »
Raquel Urtasun -
2012 Poster: Efficient Sampling for Bipartite Matching Problems »
Maksims Volkovs · Richard Zemel -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Session: Spotlight Session 5 »
Raquel Urtasun -
2011 Session: Oral Session 6 »
Raquel Urtasun -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun -
2011 Poster: Joint 3D Estimation of Objects and Scene Layout »
Andreas Geiger · Christian Wojek · Raquel Urtasun -
2010 Poster: Sparse Coding for Learning Interpretable Spatio-Temporal Primitives »
Taehwan Kim · Greg Shakhnarovich · Raquel Urtasun -
2010 Session: Spotlights Session 6 »
Raquel Urtasun -
2010 Session: Oral Session 7 »
Raquel Urtasun -
2010 Poster: Implicitly Constrained Gaussian Process Regression for Monocular Non-Rigid Pose Estimation »
Mathieu Salzmann · Raquel Urtasun -
2010 Poster: A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction »
Tamir Hazan · Raquel Urtasun -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Placeholder: Opening Remarks »
Richard Zemel -
2008 Poster: Comparing model predictions of response bias and variance in cue combination »
Rama Natarajan · Iain Murray · Ladan Shams · Richard Zemel -
2008 Poster: Learning Hybrid Models for Image Annotation with Partially Labeled Data »
Xuming He · Richard Zemel -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel