Timezone: »

 
Poster
Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity
Eugene Belilovsky · Gaël Varoquaux · Matthew Blaschko

Tue Dec 06 09:00 AM -- 12:30 PM (PST) @ Area 5+6+7+8 #176

Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g.\ using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator. Recent work invokes the sparsity assumptions to effectively remove the bias from a sparse estimator such as the lasso. These distributions can be used to give confidence intervals on edges in GGMs, and by extension their differences. However, in the case of comparing GGMs, these estimators do not make use of any assumed joint structure among the GGMs. Inspired by priors from brain functional connectivity we derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. This leads us to introduce the debiased multi-task fused lasso, whose distribution can be characterized in an efficient manner. We then show how the debiased lasso and multi-task fused lasso can be used to obtain confidence intervals on edge differences in GGMs. We validate the techniques proposed on a set of synthetic examples as well as neuro-imaging dataset created for the study of autism.

Author Information

Eugene Belilovsky (CentraleSupelec)
Gaël Varoquaux (INRIA)
Matthew Blaschko (KU Leuven)

More from the Same Authors

  • 2021 : Greedy Bayesian Posterior Approximation with Deep Ensembles »
    Aleksei Tiulpin · Matthew Blaschko
  • 2022 : Metrics Reloaded »
    Annika Reinke · Lena Maier-Hein · Patrick Scholz · Minu D. Tizabi · Evangelia Christodoulou · Ben Glocker · Fabian Isensee · Jens Kleesiek · Michal Kozubek · Mauricio Reyes · Michael A. Riegler · Manuel Wiesenfarth · Michael Baumgartner · Matthias Eisenmann · Doreen Heckmann-Nötzel · A. Kavur · Tim Rädsch · Laura Acion · Michela Antonelli · Tal Arbel · Spyridon Bakas · Pete Bankhead · Arriel Benis · Florian Buettner · M. Jorge Cardoso · Veronika Cheplygina · Beth Cimini · Gary Collins · Keyvan Farahani · Luciana Ferrer · Adrian Galdran · Bram van Ginneken · Robert Haase · Daniel Hashimoto · Michael Hoffman · Merel Huisman · Pierre Jannin · Charles Kahn · Dagmar Kainmueller · Alexandros Karargyris · Bernhard Kainz · Alan Karthikesalingam · Hannes Kenngott · Florian Kofler · Annette Kopp-Schneider · Anna Kreshuk · Tahsin Kurc · Bennett Landman · Geert Litjens · Amin Madani · Klaus H. Maier-Hein · Anne Martel · Peter Mattson · Erik Meijering · Bjoern Menze · David Moher · Karel G.M. Moons · Henning Mueller · Brennan Nichyporuk · Felix Nickel · Jens Petersen · Nasir Rajpoot · Nicola Rieke · Julio Saez-Rodriguez · Clarisa Sanchez · Shravya Shetty · Maarten van Smeden · Carole Sudre · Ronald Summers · Abdel Aziz Taha · Sotirios Tsaftaris · Ben Ben Van Calster · Gaël Varoquaux · Paul Jäger
  • 2023 Poster: Jaccard Metric Losses: Optimizing the Jaccard Index with Soft Labels in Semantic Segmentation »
    Zifu Wang · Xuefei Ning · Matthew Blaschko
  • 2023 Poster: Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union »
    Zifu Wang · Maxim Berman · Amal Rannen-Triki · Philip Torr · Devis Tuia · Tinne Tuytelaars · Luc V Gool · Jiaqian Yu · Matthew Blaschko
  • 2022 : Tackling Personalized Federated Learning with Label Concept Drift via Hierarchical Bayesian Modeling »
    Xingchen Ma · Junyi Zhu · Matthew Blaschko
  • 2022 Poster: A Consistent and Differentiable Lp Canonical Calibration Error Estimator »
    Teodora Popordanoska · Raphael Sayer · Matthew Blaschko
  • 2019 : Poster Session »
    Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar
  • 2017 : Machine learning for cognitive mapping »
    Gaël Varoquaux
  • 2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
    Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré
  • 2016 Oral: Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity »
    Eugene Belilovsky · Gaël Varoquaux · Matthew Blaschko
  • 2013 Poster: B-test: A Non-parametric, Low Variance Kernel Two-sample Test »
    Wojciech Zaremba · Arthur Gretton · Matthew B Blaschko
  • 2012 Poster: Perceptron Learning of SAT »
    Alex Flint · Matthew B Blaschko
  • 2010 Poster: Simultaneous Object Detection and Ranking with Weak Supervision »
    Matthew B Blaschko · Andrea Vedaldi · Andrew Zisserman
  • 2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
    Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion
  • 2009 Poster: Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity »
    Matthew B Blaschko · Jacquelyn A Shelton · Andreas Bartels
  • 2008 Poster: Learning Taxonomies by Dependence Maximization »
    Matthew B Blaschko · Arthur Gretton