Timezone: »
We extend the traditional worst-case, minimax analysis of stochastic convex optimization by introducing a localized form of minimax complexity for individual functions. Our main result gives function-specific lower and upper bounds on the number of stochastic subgradient evaluations needed to optimize either the function or its ``hardest local alternative'' to a given numerical precision. The bounds are expressed in terms of a localized and computational analogue of the modulus of continuity that is central to statistical minimax analysis. We show how the computational modulus of continuity can be explicitly calculated in concrete cases, and relates to the curvature of the function at the optimum. We also prove a superefficiency result that demonstrates it is a meaningful benchmark, acting as a computational analogue of the Fisher information in statistical estimation. The nature and practical implications of the results are demonstrated in simulations.
Author Information
sabyasachi chatterjee (University of Chicago)
John Duchi (Stanford)
John Lafferty (Yale University)
Yuancheng Zhu (University of Chicago)
More from the Same Authors
-
2021 : Private Confidence Sets »
Karan Chadha · John Duchi · Rohith Kuditipudi -
2022 : adaStar: A Method for Adapting to Interpolation »
Gary Cheng · John Duchi -
2023 Poster: Collaboratively Learning Linear Models with Structured Missing Data »
Chen Cheng · Gary Cheng · John Duchi -
2022 Workshop: OPT 2022: Optimization for Machine Learning »
Courtney Paquette · Sebastian Stich · Quanquan Gu · Cristóbal Guzmán · John Duchi -
2022 Poster: Subspace Recovery from Heterogeneous Data with Non-isotropic Noise »
John Duchi · Vitaly Feldman · Lunjia Hu · Kunal Talwar -
2021 Poster: Adapting to function difficulty and growth conditions in private optimization »
Hilal Asi · Daniel Levy · John Duchi -
2020 Poster: Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems »
Aman Sinha · Matthew O'Kelly · Russ Tedrake · John Duchi -
2020 Poster: Conic Descent and its Application to Memory-efficient Optimization over Positive Semidefinite Matrices »
John Duchi · Oliver Hinder · Andrew Naber · Yinyu Ye -
2020 Poster: Large-Scale Methods for Distributionally Robust Optimization »
Daniel Levy · Yair Carmon · John Duchi · Aaron Sidford -
2020 Poster: Minibatch Stochastic Approximate Proximal Point Methods »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2020 Spotlight: Minibatch Stochastic Approximate Proximal Point Methods »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2020 Poster: Instance-optimality in differential privacy via approximate inverse sensitivity mechanisms »
Hilal Asi · John Duchi -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Unlabeled Data Improves Adversarial Robustness »
Yair Carmon · Aditi Raghunathan · Ludwig Schmidt · John Duchi · Percy Liang -
2019 Poster: Necessary and Sufficient Geometries for Gradient Methods »
Daniel Levy · John Duchi -
2019 Oral: Necessary and Sufficient Geometries for Gradient Methods »
Daniel Levy · John Duchi -
2018 Poster: Analysis of Krylov Subspace Solutions of Regularized Non-Convex Quadratic Problems »
Yair Carmon · John Duchi -
2018 Oral: Analysis of Krylov Subspace Solutions of Regularized Non-Convex Quadratic Problems »
Yair Carmon · John Duchi -
2018 Poster: Generalizing to Unseen Domains via Adversarial Data Augmentation »
Riccardo Volpi · Hongseok Namkoong · Ozan Sener · John Duchi · Vittorio Murino · Silvio Savarese -
2018 Poster: Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation »
Matthew O'Kelly · Aman Sinha · Hongseok Namkoong · Russ Tedrake · John Duchi -
2017 Poster: Variance-based Regularization with Convex Objectives »
Hongseok Namkoong · John Duchi -
2017 Oral: Variance-based Regularization with Convex Objectives »
Hongseok Namkoong · John Duchi -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 Poster: Selective inference for group-sparse linear models »
Fan Yang · Rina Barber · Prateek Jain · John Lafferty -
2016 Poster: Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences »
Hongseok Namkoong · John Duchi -
2016 Poster: Learning Kernels with Random Features »
Aman Sinha · John Duchi -
2015 Poster: Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care »
Sorathan Chaturapruek · John Duchi · Christopher Ré -
2015 Poster: A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements »
Qinqing Zheng · John Lafferty -
2014 Poster: Blossom Tree Graphical Models »
Zhe Liu · John Lafferty -
2014 Poster: Quantized Estimation of Gaussian Sequence Models in Euclidean Balls »
Yuancheng Zhu · John Lafferty -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Oral: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Poster: Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation »
John Duchi · Martin J Wainwright · Michael Jordan -
2013 Poster: Estimation, Optimization, and Parallelism when Data is Sparse »
John Duchi · Michael Jordan · Brendan McMahan -
2012 Workshop: Big Learning : Algorithms, Systems, and Tools »
Sameer Singh · John Duchi · Yucheng Low · Joseph E Gonzalez -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: Nonparametric Reduced Rank Regression »
Rina Foygel · Michael Horrell · Mathias Drton · John Lafferty -
2012 Poster: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Communication-Efficient Algorithms for Statistical Optimization »
Yuchen Zhang · John Duchi · Martin J Wainwright -
2012 Oral: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods »
John Duchi · Michael Jordan · Martin J Wainwright · Andre Wibisono -
2012 Poster: Exponential Concentration for Mutual Information Estimation with Application to Forests »
Han Liu · John Lafferty · Larry Wasserman -
2011 Workshop: Copulas in Machine Learning »
Gal Elidan · Zoubin Ghahramani · John Lafferty -
2011 Poster: Distributed Delayed Stochastic Optimization »
Alekh Agarwal · John Duchi -
2010 Workshop: Learning on Cores, Clusters, and Clouds »
Alekh Agarwal · Lawrence Cayton · Ofer Dekel · John Duchi · John Langford -
2010 Spotlight: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Spotlight: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Poster: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2009 Poster: Efficient Learning using Forward-Backward Splitting »
John Duchi · Yoram Singer -
2009 Oral: Efficient Learning using Forward-Backward Splitting »
John Duchi · Yoram Singer -
2008 Poster: Nonparametric regression and classification with joint sparsity constraints »
Han Liu · John Lafferty · Larry Wasserman -
2008 Spotlight: Nonparametric regression and classification with joint sparsity constraints »
Han Liu · John Lafferty · Larry Wasserman -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: Statistical Analysis of Semi-Supervised Regression »
John Lafferty · Larry Wasserman -
2007 Poster: Statistical Analysis of Semi-Supervised Regression »
John Lafferty · Larry Wasserman -
2007 Poster: Compressed Regression »
Shuheng Zhou · John Lafferty · Larry Wasserman -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Poster: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller