Timezone: »
Variational inference is an umbrella term for algorithms which cast Bayesian inference as optimization. Classically, variational inference uses the Kullback-Leibler divergence to define the optimization. Though this divergence has been widely used, the resultant posterior approximation can suffer from undesirable statistical properties. To address this, we reexamine variational inference from its roots as an optimization problem. We use operators, or functions of functions, to design variational objectives. As one example, we design a variational objective with a Langevin-Stein operator. We develop a black box algorithm, operator variational inference (OPVI), for optimizing any operator objective. Importantly, operators enable us to make explicit the statistical and computational tradeoffs for variational inference. We can characterize different properties of variational objectives, such as objectives that admit data subsampling---allowing inference to scale to massive data---as well as objectives that admit variational programs---a rich class of posterior approximations that does not require a tractable density. We illustrate the benefits of OPVI on a mixture model and a generative model of images.
Author Information
Rajesh Ranganath (Princeton University)
Rajesh Ranganath is a PhD candidate in computer science at Princeton University. His research interests include approximate inference, model checking, Bayesian nonparametrics, and machine learning for healthcare. Rajesh has made several advances in variational methods, especially in popularising black-box variational inference methods that automate the process of inference by making variational inference easier to use while providing more scalable, and accurate posterior approximations. Rajesh works in SLAP group with David Blei. Before starting his PhD, Rajesh worked as a software engineer for AMA Capital Management. He obtained his BS and MS from Stanford University with Andrew Ng and Dan Jurafsky. Rajesh has won several awards and fellowships including the NDSEG graduate fellowship and the Porter Ogden Jacobus Fellowship, given to the top four doctoral students at Princeton University.
Dustin Tran (Columbia University)
Jaan Altosaar (Princeton University)
David Blei (Columbia University)
David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.
More from the Same Authors
-
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Session: Orals & Spotlights Track 33: Health/AutoML/(Soft|Hard)ware »
Dustin Tran · Artur Dubrawski -
2020 Poster: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness »
Jeremiah Liu · Zi Lin · Shreyas Padhy · Dustin Tran · Tania Bedrax Weiss · Balaji Lakshminarayanan -
2020 Poster: Hyperparameter Ensembles for Robustness and Uncertainty Quantification »
Florian Wenzel · Jasper Snoek · Dustin Tran · Rodolphe Jenatton -
2020 Poster: Markovian Score Climbing: Variational Inference with KL(p||q) »
Christian Naesseth · Fredrik Lindsten · David Blei -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning Q&A »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2019 Poster: Bayesian Layers: A Module for Neural Network Uncertainty »
Dustin Tran · Mike Dusenberry · Mark van der Wilk · Danijar Hafner -
2019 Poster: Discrete Flows: Invertible Generative Models of Discrete Data »
Dustin Tran · Keyon Vafa · Kumar Agrawal · Laurent Dinh · Ben Poole -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2019 Poster: Variational Bayes under Model Misspecification »
Yixin Wang · David Blei -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei -
2019 Poster: Adapting Neural Networks for the Estimation of Treatment Effects »
Claudia Shi · David Blei · Victor Veitch -
2018 Poster: Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language »
Matthew D. Hoffman · Matthew Johnson · Dustin Tran -
2018 Poster: Simple, Distributed, and Accelerated Probabilistic Programming »
Dustin Tran · Matthew Hoffman · Dave Moore · Christopher Suter · Srinivas Vasudevan · Alexey Radul · Matthew Johnson · Rif A. Saurous -
2018 Poster: Mesh-TensorFlow: Deep Learning for Supercomputers »
Noam Shazeer · Youlong Cheng · Niki Parmar · Dustin Tran · Ashish Vaswani · Penporn Koanantakool · Peter Hawkins · HyoukJoong Lee · Mingsheng Hong · Cliff Young · Ryan Sepassi · Blake Hechtman -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Hierarchical Implicit Models and Likelihood-Free Variational Inference »
Dustin Tran · Rajesh Ranganath · David Blei -
2017 Poster: Structured Embedding Models for Grouped Data »
Maja Rudolph · Francisco Ruiz · Susan Athey · David Blei -
2017 Poster: Variational Inference via $\chi$ Upper Bound Minimization »
Adji Bousso Dieng · Dustin Tran · Rajesh Ranganath · John Paisley · David Blei -
2017 Poster: Context Selection for Embedding Models »
Liping Liu · Francisco Ruiz · Susan Athey · David Blei -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: The Generalized Reparameterization Gradient »
Francisco Ruiz · Michalis Titsias · David Blei -
2016 Poster: Exponential Family Embeddings »
Maja Rudolph · Francisco Ruiz · Stephan Mandt · David Blei -
2016 Tutorial: Variational Inference: Foundations and Modern Methods »
David Blei · Shakir Mohamed · Rajesh Ranganath -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Workshop: Machine Learning For Healthcare (MLHC) »
Theofanis Karaletsos · Rajesh Ranganath · Suchi Saria · David Sontag -
2015 Poster: The Population Posterior and Bayesian Modeling on Streams »
James McInerney · Rajesh Ranganath · David Blei -
2015 Poster: Automatic Variational Inference in Stan »
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei -
2015 Spotlight: Automatic Variational Inference in Stan »
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi