Timezone: »
Missing records are a perennial problem in analysis of complex data of all types, when the target of inference is some function of the full data law. In simple cases, where data is missing at random or completely at random (Rubin, 1976), well-known adjustments exist that result in consistent estimators of target quantities. Assumptions underlying these estimators are generally not realistic in practical missing data problems. Unfortunately, consistent estimators in more complex cases where data is missing not at random, and where no ordering on variables induces monotonicity of missingness status are not known in general, with some notable exceptions (Robins, 1997), (Tchetgen Tchetgen et al, 2016), (Sadinle and Reiter, 2016). In this paper, we propose a general class of consistent estimators for cases where data is missing not at random, and missingness status is non-monotonic. Our estimators, which are generalized inverse probability weighting estimators, make no assumptions on the underlying full data law, but instead place independence restrictions, and certain other fairly mild assumptions, on the distribution of missingness status conditional on the data. The assumptions we place on the distribution of missingness status conditional on the data can be viewed as a version of a conditional Markov random field (MRF) corresponding to a chain graph. Assumptions embedded in our model permit identification from the observed data law, and admit a natural fitting procedure based on the pseudo likelihood approach of (Besag, 1975). We illustrate our approach with a simple simulation study, and an analysis of risk of premature birth in women in Botswana exposed to highly active anti-retroviral therapy.
Author Information
Ilya Shpitser (Johns Hopkins University)
More from the Same Authors
-
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2018 Poster: Identification and Estimation of Causal Effects from Dependent Data »
Eli Sherman · Ilya Shpitser -
2018 Spotlight: Identification and Estimation of Causal Effects from Dependent Data »
Eli Sherman · Ilya Shpitser -
2017 : Contributed Talk 3 »
Ilya Shpitser -
2017 : Poster session »
Abbas Zaidi · Christoph Kurz · David Heckerman · YiJyun Lin · Stefan Riezler · Ilya Shpitser · Songbai Yan · Olivier Goudet · Yash Deshpande · Judea Pearl · Jovana Mitrovic · Brian Vegetabile · Tae Hwy Lee · Karen Sachs · Karthika Mohan · Reagan Rose · Julius Ramakers · Negar Hassanpour · Pierre Baldi · Razieh Nabi · Noah Hammarlund · Eli Sherman · Carolin Lawrence · Fattaneh Jabbari · Vira Semenova · Maria Dimakopoulou · Pratik Gajane · Russell Greiner · Ilias Zadik · Alexander Blocker · Hao Xu · Tal EL HAY · Tony Jebara · Benoit Rostykus -
2015 Poster: Segregated Graphs and Marginals of Chain Graph Models »
Ilya Shpitser