Timezone: »
Abstract: The revolution of self-driving cars will happen in the near future. Most solutions rely on expensive 3D sensors such as LIDAR as well as hand-annotated maps. Unfortunately, this is neither cost effective nor scalable, as one needs to have a very detailed up-to-date map of the world. In this talk, I’ll review our current efforts in the domain of autonomous driving. In particular, I'll present our work on stereo, optical flow, appearance-less localization, 3D object detection as well as creating HD maps from visual information alone. This results in a much more scalable and cost-effective solution to self-driving cars.
Bio: Raquel Urtasun is an Associate Professor in the Department of Computer Science at the University of Toronto and a Canada Research Chair in Machine Learning and Computer Vision. Prior to this, she was an Assistant Professor at the Toyota Technological Institute at Chicago (TTIC), an academic computer science institute affiliated with the University of Chicago. She received her Ph.D. degree from the Computer Science department at Ecole Polytechnique Federal de Lausanne (EPFL) in 2006 and did her postdoc at MIT and UC Berkeley. Her research interests include machine learning, computer vision and robotics. Her recent work involves perception algorithms for self-driving cars, deep structured models and exploring problems at the intersection of vision and language. She is a recipient of an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, two Google Faculty Research Awards, a Connaught New Researcher Award and a Best Paper Runner up Prize awarded at the Conference on Computer Vision and Pattern Recognition (CVPR). She is also Program Chair of CVPR 2018, an Editor of the International Journal in Computer Vision (IJCV) and has served as Area Chair of multiple machine learning and vision conferences (i.e., NIPS, UAI, ICML, ICLR, CVPR, ECCV, ICCV).
Author Information
Raquel Urtasun (University of Toronto)
More from the Same Authors
-
2023 Poster: Neural Lighting Simulation for Urban Scenes »
Ava Pun · Gary Sun · Jingkang Wang · Yun Chen · Ze Yang · Sivabalan Manivasagam · Wei-Chiu Ma · Raquel Urtasun -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Raquel Urtasun - Science and Engineering for Self-driving »
Raquel Urtasun -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 : Machine Learning for Self-Driving Cars, Raquel Urtasun, Uber ATG and University of Toronto »
Raquel Urtasun -
2017 : Raquel Urtasun: Deep Learning for Self-Driving Cars »
Raquel Urtasun -
2017 Poster: The Reversible Residual Network: Backpropagation Without Storing Activations »
Aidan Gomez · Mengye Ren · Raquel Urtasun · Roger Grosse -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2016 : Raquel Urtasun »
Raquel Urtasun -
2016 : Invited Talk - TorontoCity Benchmark: Towards Building Large Scale 3D Models of the World »
Raquel Urtasun -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2014 Poster: Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials »
Shenlong Wang · Alex Schwing · Raquel Urtasun -
2014 Poster: Message Passing Inference for Large Scale Graphical Models with High Order Potentials »
Jian Zhang · Alex Schwing · Raquel Urtasun -
2013 Poster: Latent Structured Active Learning »
Wenjie Luo · Alex Schwing · Raquel Urtasun -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Session: Oral Session 1 »
Raquel Urtasun -
2011 Session: Spotlight Session 5 »
Raquel Urtasun -
2011 Session: Oral Session 6 »
Raquel Urtasun -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun -
2011 Poster: Joint 3D Estimation of Objects and Scene Layout »
Andreas Geiger · Christian Wojek · Raquel Urtasun -
2010 Poster: Sparse Coding for Learning Interpretable Spatio-Temporal Primitives »
Taehwan Kim · Greg Shakhnarovich · Raquel Urtasun -
2010 Session: Spotlights Session 6 »
Raquel Urtasun -
2010 Session: Oral Session 7 »
Raquel Urtasun -
2010 Poster: Implicitly Constrained Gaussian Process Regression for Monocular Non-Rigid Pose Estimation »
Mathieu Salzmann · Raquel Urtasun -
2010 Poster: A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction »
Tamir Hazan · Raquel Urtasun