Timezone: »
Optimal transport (OT) defines a powerful framework to compare probability distributions in a geometrically faithful way. However, the practical impact of OT is still limited because of its computational burden. We propose a new class of stochastic optimization algorithms to cope with large-scale problems routinely encountered in machine learning applications. These methods are able to manipulate arbitrary distributions (either discrete or continuous) by simply requiring to be able to draw samples from them, which is the typical setup in high-dimensional learning problems. This alleviates the need to discretize these densities, while giving access to provably convergent methods that output the correct distance without discretization error. These algorithms rely on two main ideas: (a) the dual OT problem can be re-cast as the maximization of an expectation; (b) entropic regularization of the primal OT problem results in a smooth dual optimization optimization which can be addressed with algorithms that have a provably faster convergence. We instantiate these ideas in three different computational setups: (i) when comparing a discrete distribution to another, we show that incremental stochastic optimization schemes can beat the current state of the art finite dimensional OT solver (Sinkhorn's algorithm) ; (ii) when comparing a discrete distribution to a continuous density, a re-formulation (semi-discrete) of the dual program is amenable to averaged stochastic gradient descent, leading to better performance than approximately solving the problem by discretization ; (iii) when dealing with two continuous densities, we propose a stochastic gradient descent over a reproducing kernel Hilbert space (RKHS). This is currently the only known method to solve this problem, and is more efficient than discretizing beforehand the two densities. We backup these claims on a set of discrete, semi-discrete and continuous benchmark problems.
Author Information
Aude Genevay (Université Paris Dauphine)
Marco Cuturi (Apple)
Marco Cuturi is a research scientist at Apple, in Paris. He received his Ph.D. in 11/2005 from the Ecole des Mines de Paris in applied mathematics. Before that he graduated from National School of Statistics (ENSAE) with a master degree (MVA) from ENS Cachan. He worked as a post-doctoral researcher at the Institute of Statistical Mathematics, Tokyo, between 11/2005 and 3/2007 and then in the financial industry between 4/2007 and 9/2008. After working at the ORFE department of Princeton University as a lecturer between 2/2009 and 8/2010, he was at the Graduate School of Informatics of Kyoto University between 9/2010 and 9/2016 as a tenured associate professor. He joined ENSAE in 9/2016 as a professor, where he is now working part-time. He was at Google between 10/2018 and 1/2022. His main employment is now with Apple, since 1/2022, as a research scientist working on fundamental aspects of machine learning.
Gabriel Peyré (CNRS and DMA)
Francis Bach (INRIA - Ecole Normale Superieure)
More from the Same Authors
-
2021 Spotlight: Batch Normalization Orthogonalizes Representations in Deep Random Networks »
Hadi Daneshmand · Amir Joudaki · Francis Bach -
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Poster: A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning »
Eloïse Berthier · Ziad Kobeissi · Francis Bach -
2023 Poster: On the impact of activation and normalization in obtaining isometric embeddings at initialization »
Amir Joudaki · Hadi Daneshmand · Francis Bach -
2023 Poster: Differentiable Clustering with Perturbed Spanning Forests »
Lawrence Stewart · Francis Bach · Felipe Llinares-Lopez · Quentin Berthet -
2023 Poster: Unbalanced Low-rank Optimal Transport Solvers »
Meyer Scetbon · Michal Klein · Giovanni Palla · Marco Cuturi -
2023 Poster: Regularization properties of adversarially-trained linear regression »
Antonio Ribeiro · Dave Zachariah · Francis Bach · Thomas Schön -
2023 Workshop: Optimal Transport and Machine Learning »
Anna Korba · Aram-Alexandre Pooladian · Charlotte Bunne · David Alvarez-Melis · Marco Cuturi · Ziv Goldfeld -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning »
Eloïse Berthier · Ziad Kobeissi · Francis Bach -
2022 Poster: Supervised Training of Conditional Monge Maps »
Charlotte Bunne · Andreas Krause · Marco Cuturi -
2022 Poster: Efficient and Modular Implicit Differentiation »
Mathieu Blondel · Quentin Berthet · Marco Cuturi · Roy Frostig · Stephan Hoyer · Felipe Llinares-Lopez · Fabian Pedregosa · Jean-Philippe Vert -
2022 Poster: Variational inference via Wasserstein gradient flows »
Marc Lambert · Sinho Chewi · Francis Bach · Silvère Bonnabel · Philippe Rigollet -
2022 Poster: Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays »
Konstantin Mishchenko · Francis Bach · Mathieu Even · Blake Woodworth -
2022 Poster: On the Theoretical Properties of Noise Correlation in Stochastic Optimization »
Aurelien Lucchi · Frank Proske · Antonio Orvieto · Francis Bach · Hans Kersting -
2022 Poster: Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization »
Benjamin Dubois-Taine · Francis Bach · Quentin Berthet · Adrien Taylor -
2022 Poster: Low-rank Optimal Transport: Approximation, Statistics and Debiasing »
Meyer Scetbon · Marco Cuturi -
2022 Poster: Active Labeling: Streaming Stochastic Gradients »
Vivien Cabannes · Francis Bach · Vianney Perchet · Alessandro Rudi -
2021 Workshop: Optimal Transport and Machine Learning »
Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning »
Vivien Cabannes · Loucas Pillaud-Vivien · Francis Bach · Alessandro Rudi -
2021 Oral: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2021 Poster: Batch Normalization Orthogonalizes Representations in Deep Random Networks »
Hadi Daneshmand · Amir Joudaki · Francis Bach -
2021 Poster: Smooth Bilevel Programming for Sparse Regularization »
Clarice Poon · Gabriel Peyré -
2021 Poster: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2021 Poster: The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2020 : Francis Bach - Where is Machine Learning Going? »
Francis Bach -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model »
Raphaël Berthier · Francis Bach · Pierre Gaillard -
2020 Poster: Learning with Differentiable Pertubed Optimizers »
Quentin Berthet · Mathieu Blondel · Olivier Teboul · Marco Cuturi · Jean-Philippe Vert · Francis Bach -
2020 Poster: Batch normalization provably avoids ranks collapse for randomly initialised deep networks »
Hadi Daneshmand · Jonas Kohler · Francis Bach · Thomas Hofmann · Aurelien Lucchi -
2020 Poster: Non-parametric Models for Non-negative Functions »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2020 Spotlight: Non-parametric Models for Non-negative Functions »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2020 Session: Orals & Spotlights Track 30: Optimization/Theory »
Yuxin Chen · Francis Bach -
2020 Poster: Dual-Free Stochastic Decentralized Optimization with Variance Reduction »
Hadrien Hendrikx · Francis Bach · Laurent Massoulié -
2020 Poster: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Poster: Linear Time Sinkhorn Divergences using Positive Features »
Meyer Scetbon · Marco Cuturi -
2020 Oral: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Session: Orals & Spotlights Track 21: Optimization »
Peter Richtarik · Marco Cuturi -
2019 Workshop: Optimal Transport for Machine Learning »
Marco Cuturi · Gabriel Peyré · Rémi Flamary · Alexandra Suvorikova -
2019 Poster: Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections »
Boris Muzellec · Marco Cuturi -
2019 Poster: Differentiable Ranking and Sorting using Optimal Transport »
Marco Cuturi · Olivier Teboul · Jean-Philippe Vert -
2019 Spotlight: Differentiable Ranking and Sorting using Optimal Transport »
Marco Cuturi · Olivier Teboul · Jean-Philippe Vert -
2019 Poster: Fast Decomposable Submodular Function Minimization using Constrained Total Variation »
Senanayak Sesh Kumar Karri · Francis Bach · Thomas Pock -
2019 Poster: Towards closing the gap between the theory and practice of SVRG »
Othmane Sebbouh · Nidham Gazagnadou · Samy Jelassi · Francis Bach · Robert Gower -
2019 Poster: An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums »
Hadrien Hendrikx · Francis Bach · Laurent Massoulié -
2019 Poster: On Lazy Training in Differentiable Programming »
Lénaïc Chizat · Edouard Oyallon · Francis Bach -
2019 Poster: Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks »
Gauthier Gidel · Francis Bach · Simon Lacoste-Julien -
2019 Poster: Massively scalable Sinkhorn distances via the Nyström method »
Jason Altschuler · Francis Bach · Alessandro Rudi · Jonathan Niles-Weed -
2019 Poster: Localized Structured Prediction »
Carlo Ciliberto · Francis Bach · Alessandro Rudi -
2019 Poster: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Spotlight: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Poster: Partially Encrypted Deep Learning using Functional Encryption »
Théo Ryffel · David Pointcheval · Francis Bach · Edouard Dufour-Sans · Romain Gay -
2019 Poster: Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2019 Poster: Tree-Sliced Variants of Wasserstein Distances »
Tam Le · Makoto Yamada · Kenji Fukumizu · Marco Cuturi -
2018 Poster: Optimal Algorithms for Non-Smooth Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee -
2018 Poster: Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes »
Loucas Pillaud-Vivien · Alessandro Rudi · Francis Bach -
2018 Poster: Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport »
Theo Lacombe · Marco Cuturi · Steve OUDOT -
2018 Oral: Optimal Algorithms for Non-Smooth Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee -
2018 Poster: Relating Leverage Scores and Density using Regularized Christoffel Functions »
Edouard Pauwels · Francis Bach · Jean-Philippe Vert -
2018 Poster: Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization »
Francis Bach -
2018 Poster: Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes »
Junqi Tang · Mohammad Golbabaee · Francis Bach · Mike Davies -
2018 Poster: SING: Symbol-to-Instrument Neural Generator »
Alexandre Defossez · Neil Zeghidour · Nicolas Usunier · Leon Bottou · Francis Bach -
2018 Poster: On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport »
Lénaïc Chizat · Francis Bach -
2018 Poster: Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions »
Boris Muzellec · Marco Cuturi -
2017 : Concluding remarks »
Francis Bach · Benjamin Guedj · Pascal Germain -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : 7 x 3 minutes spotlights »
Elsa Cazelles · Aude Genevay · Gonzalo Mena · Christoph Brauer · Asja Fischer · Henning Petzka · Vivien Seguy · Antoine Rolet · Sho Sonoda -
2017 : Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance »
Francis Bach -
2017 : Overture »
Benjamin Guedj · Francis Bach · Pascal Germain -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Workshop: (Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights »
Benjamin Guedj · Pascal Germain · Francis Bach -
2017 Poster: On Structured Prediction Theory with Calibrated Convex Surrogate Losses »
Anton Osokin · Francis Bach · Simon Lacoste-Julien -
2017 Oral: On Structured Prediction Theory with Calibrated Convex Surrogate Losses »
Anton Osokin · Francis Bach · Simon Lacoste-Julien -
2017 Poster: Nonlinear Acceleration of Stochastic Algorithms »
Damien Scieur · Francis Bach · Alexandre d'Aspremont -
2017 Poster: Integration Methods and Optimization Algorithms »
Damien Scieur · Vincent Roulet · Francis Bach · Alexandre d'Aspremont -
2017 Tutorial: A Primer on Optimal Transport »
Marco Cuturi · Justin Solomon -
2016 : Francis Bach. Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. »
Francis Bach -
2016 Workshop: OPT 2016: Optimization for Machine Learning »
Suvrit Sra · Francis Bach · Sashank J. Reddi · Niao He -
2016 : Submodular Functions: from Discrete to Continuous Domains »
Francis Bach -
2016 Workshop: Learning in High Dimensions with Structure »
Nikhil Rao · Prateek Jain · Hsiang-Fu Yu · Ming Yuan · Francis Bach -
2016 Workshop: Time Series Workshop »
Oren Anava · Marco Cuturi · Azadeh Khaleghi · Vitaly Kuznetsov · Sasha Rakhlin -
2016 Poster: Parameter Learning for Log-supermodular Distributions »
Tatiana Shpakova · Francis Bach -
2016 Poster: A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization »
Jingwei Liang · Jalal Fadili · Gabriel Peyré -
2016 Poster: Wasserstein Training of Restricted Boltzmann Machines »
Grégoire Montavon · Klaus-Robert Müller · Marco Cuturi -
2016 Poster: Regularized Nonlinear Acceleration »
Damien Scieur · Alexandre d'Aspremont · Francis Bach -
2016 Oral: Regularized Nonlinear Acceleration »
Damien Scieur · Alexandre d'Aspremont · Francis Bach -
2016 Poster: Stochastic Variance Reduction Methods for Saddle-Point Problems »
Balamurugan Palaniappan · Francis Bach -
2016 Poster: PAC-Bayesian Theory Meets Bayesian Inference »
Pascal Germain · Francis Bach · Alexandre Lacoste · Simon Lacoste-Julien -
2016 Poster: Sparse Support Recovery with Non-smooth Loss Functions »
Kévin Degraux · Gabriel Peyré · Jalal Fadili · Laurent Jacques -
2016 Tutorial: Large-Scale Optimization: Beyond Stochastic Gradient Descent and Convexity »
Suvrit Sra · Francis Bach -
2015 : Structured Sparsity and convex optimization »
Francis Bach -
2015 : Sharp Analysis of Random Feature Expansions »
Francis Bach -
2015 : Convergence Rates of Kernel Quadrature Rules »
Francis Bach -
2015 Poster: Biologically Inspired Dynamic Textures for Probing Motion Perception »
Jonathan Vacher · Andrew Isaac Meso · Laurent U Perrinet · Gabriel Peyré -
2015 Spotlight: Biologically Inspired Dynamic Textures for Probing Motion Perception »
Jonathan Vacher · Andrew Isaac Meso · Laurent U Perrinet · Gabriel Peyré -
2015 Poster: Rethinking LDA: Moment Matching for Discrete ICA »
Anastasia Podosinnikova · Francis Bach · Simon Lacoste-Julien -
2015 Poster: Spectral Norm Regularization of Orthonormal Representations for Graph Transduction »
Rakesh Shivanna · Bibaswan K Chatterjee · Raman Sankaran · Chiranjib Bhattacharyya · Francis Bach -
2015 Poster: Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric »
Vivien Seguy · Marco Cuturi -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman -
2014 Poster: Metric Learning for Temporal Sequence Alignment »
Rémi Lajugie · Damien Garreau · Francis Bach · Sylvain Arlot -
2014 Poster: Local Linear Convergence of Forward--Backward under Partial Smoothness »
Jingwei Liang · Jalal Fadili · Gabriel Peyré -
2014 Poster: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives »
Aaron Defazio · Francis Bach · Simon Lacoste-Julien -
2013 Poster: Sinkhorn Distances: Lightspeed Computation of Optimal Transport »
Marco Cuturi -
2013 Spotlight: Sinkhorn Distances: Lightspeed Computation of Optimal Transport »
Marco Cuturi -
2013 Poster: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n) »
Francis Bach · Eric Moulines -
2013 Spotlight: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n) »
Francis Bach · Eric Moulines -
2013 Session: Oral Session 2 »
Francis Bach -
2013 Poster: Convex Relaxations for Permutation Problems »
Fajwel Fogel · Rodolphe Jenatton · Francis Bach · Alexandre d'Aspremont -
2013 Poster: Reflection methods for user-friendly submodular optimization »
Stefanie Jegelka · Francis Bach · Suvrit Sra -
2013 Session: Tutorial Session B »
Francis Bach -
2012 Workshop: Analysis Operator Learning vs. Dictionary Learning: Fraternal Twins in Sparse Modeling »
Martin Kleinsteuber · Francis Bach · Remi Gribonval · John Wright · Simon Hawe -
2012 Poster: Multiple Operator-valued Kernel Learning »
Hachem Kadri · Alain Rakotomamonjy · Francis Bach · philippe preux -
2012 Poster: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Oral: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Oral: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Poster: Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning »
Francis Bach · Eric Moulines -
2011 Poster: Trace Lasso: a trace norm regularization for correlated designs »
Edouard Grave · Guillaume R Obozinski · Francis Bach -
2011 Spotlight: Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning »
Francis Bach · Eric Moulines -
2011 Poster: Shaping Level Sets with Submodular Functions »
Francis Bach -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Efficient Optimization for Discriminative Latent Class Models »
Armand Joulin · Francis Bach · Jean A Ponce -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Oral: Structured sparsity-inducing norms through submodular functions »
Francis Bach -
2010 Poster: Structured sparsity-inducing norms through submodular functions »
Francis Bach -
2010 Poster: Network Flow Algorithms for Structured Sparsity »
Julien Mairal · Rodolphe Jenatton · Guillaume R Obozinski · Francis Bach -
2009 Workshop: Understanding Multiple Kernel Learning Methods »
Brian McFee · Gert Lanckriet · Francis Bach · Nati Srebro -
2009 Poster: Data-driven calibration of linear estimators with minimal penalties »
Sylvain Arlot · Francis Bach -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2009 Poster: White Functionals for Anomaly Detection in Dynamical Systems »
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont -
2009 Tutorial: Sparse Methods for Machine Learning: Theory and Algorithms »
Francis Bach -
2008 Poster: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Poster: Sparse probabilistic projections »
Cedric Archambeau · Francis Bach -
2008 Spotlight: Sparse probabilistic projections »
Cedric Archambeau · Francis Bach -
2008 Spotlight: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Poster: Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning »
Francis Bach -
2008 Poster: Kernel Change-point Analysis »
Zaid Harchaoui · Francis Bach · Eric Moulines -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2007 Poster: Testing for Homogeneity with Kernel Fisher Discriminant Analysis »
Zaid Harchaoui · Francis Bach · Moulines Eric -
2007 Poster: DIFFRAC: a discriminative and flexible framework for clustering »
Francis Bach · Zaid Harchaoui -
2007 Session: Session 2: Probabilistic Optimization »
Francis Bach -
2006 Poster: Active learning for misspecified generalized linear models »
Francis Bach -
2006 Poster: Kernels on Structured Objects Through Nested Histograms »
Marco Cuturi · Kenji Fukumizu