Timezone: »
Poster
Threshold Bandits, With and Without Censored Feedback
Jacob D Abernethy · Kareem Amin · Ruihao Zhu
We consider the \emph{Threshold Bandit} setting, a variant of the classical multi-armed bandit problem in which the reward on each round depends on a piece of side information known as a \emph{threshold value}. The learner selects one of $K$ actions (arms), this action generates a random sample from a fixed distribution, and the action then receives a unit payoff in the event that this sample exceeds the threshold value. We consider two versions of this problem, the \emph{uncensored} and \emph{censored} case, that determine whether the sample is always observed or only when the threshold is not met. Using new tools to understand the popular UCB algorithm, we show that the uncensored case is essentially no more difficult than the classical multi-armed bandit setting. Finally we show that the censored case exhibits more challenges, but we give guarantees in the event that the sequence of threshold values is generated optimistically.
Author Information
Jacob D Abernethy (University of Michigan)
Kareem Amin (University of Michigan)
Ruihao Zhu (MIT)
More from the Same Authors
-
2018 Workshop: CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2018 : Building Algorithms by Playing Games »
Jacob D Abernethy -
2017 Workshop: Machine Learning Challenges as a Research Tool »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2017 Poster: On Frank-Wolfe and Equilibrium Computation »
Jacob D Abernethy · Jun-Kun Wang -
2017 Spotlight: On Frank-Wolfe and Equilibrium Computation »
Jacob D Abernethy · Jun-Kun Wang -
2015 Poster: Fighting Bandits with a New Kind of Smoothness »
Jacob D Abernethy · Chansoo Lee · Ambuj Tewari -
2015 Poster: A Market Framework for Eliciting Private Data »
Bo Waggoner · Rafael Frongillo · Jacob D Abernethy -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2013 Poster: Minimax Optimal Algorithms for Unconstrained Linear Optimization »
Brendan McMahan · Jacob D Abernethy -
2013 Poster: Adaptive Market Making via Online Learning »
Jacob D Abernethy · Satyen Kale -
2013 Poster: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Spotlight: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Oral: Adaptive Market Making via Online Learning »
Jacob D Abernethy · Satyen Kale -
2011 Poster: A Collaborative Mechanism for Crowdsourcing Prediction Problems »
Jacob D Abernethy · Rafael Frongillo -
2011 Oral: A Collaborative Mechanism for Crowdsourcing Prediction Problems »
Jacob D Abernethy · Rafael Frongillo -
2010 Poster: Repeated Games against Budgeted Adversaries »
Jacob D Abernethy · Manfred K. Warmuth