Timezone: »

End-to-end Differentiable Proving
Tim Rocktäschel · Sebastian Riedel

Wed Dec 06 10:50 AM -- 11:05 AM (PST) @ Hall C

We introduce deep neural networks for end-to-end differentiable theorem proving that operate on dense vector representations of symbols. These neural networks are recursively constructed by following the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. The resulting neural network can be trained to infer facts from a given incomplete knowledge base using gradient descent. By doing so, it learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove facts, (iii) induce logical rules, and (iv) it can use provided and induced logical rules for complex multi-hop reasoning. On four benchmark knowledge bases we demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, while at the same time inducing interpretable function-free first-order logic rules.

Author Information

Tim Rocktäschel (University of Oxford)

Tim Rocktäschel is a Research Scientist at Facebook AI Research (FAIR) London and a Lecturer in the Department of Computer Science at University College London (UCL). At UCL, he is a member of the UCL Centre for Artificial Intelligence and the UCL Natural Language Processing group. Prior to that, he was a Postdoctoral Researcher in the Whiteson Research Lab, a Stipendiary Lecturer in Computer Science at Hertford College, and a Junior Research Fellow in Computer Science at Jesus College, at the University of Oxford. Tim obtained his Ph.D. in the Machine Reading group at University College London under the supervision of Sebastian Riedel. He received a Google Ph.D. Fellowship in Natural Language Processing in 2017 and a Microsoft Research Ph.D. Scholarship in 2013. In Summer 2015, he worked as a Research Intern at Google DeepMind. In 2012, he obtained his Diploma (equivalent to M.Sc) in Computer Science from the Humboldt-Universität zu Berlin. Between 2010 and 2012, he worked as Student Assistant and in 2013 as Research Assistant in the Knowledge Management in Bioinformatics group at Humboldt-Universität zu Berlin. Tim's research focuses on sample-efficient and interpretable machine learning models that learn from world, domain, and commonsense knowledge in symbolic and textual form. His work is at the intersection of deep learning, reinforcement learning, natural language processing, program synthesis, and formal logic.

Sebastian Riedel (University College London)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors