Oral
Online control of the false discovery rate with decaying memory
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan

Wed Dec 6th 11:05 -- 11:20 AM @ Hall A
In the online multiple testing problem, p-values corresponding to different null hypotheses are presented one by one, and the decision of whether to reject a hypothesis must be made immediately, after which the next p-value is presented. Alpha-investing algorithms to control the false discovery rate were first formulated by Foster and Stine and have since been generalized and applied to various settings, varying from quality-preserving databases for science to multiple A/B tests for internet commerce. This paper improves the class of generalized alpha-investing algorithms (GAI) in four ways : (a) we show how to uniformly improve the power of the entire class of GAI procedures under independence by awarding more alpha-wealth for each rejection, giving a near win-win resolution to a dilemma raised by Javanmard and Montanari, (b) we demonstrate how to incorporate prior weights to indicate domain knowledge of which hypotheses are likely to be null or non-null, (c) we allow for differing penalties for false discoveries to indicate that some hypotheses may be more meaningful/important than others, (d) we define a new quantity called the \emph{decaying memory false discovery rate, or $\memfdr$} that may be more meaningful for applications with an explicit time component, using a discount factor to incrementally forget past decisions and alleviate some potential problems that we describe and name ``piggybacking'' and ``alpha-death''. Our GAI++ algorithms incorporate all four generalizations (a, b, c, d) simulatenously, and reduce to more powerful variants of earlier algorithms when the weights and decay are all set to unity.

Author Information

Aaditya Ramdas (University of California, Berkeley)
Fanny Yang (ETH Zurich)
Martin Wainwright (UC Berkeley)
Michael Jordan (UC Berkeley)

More from the Same Authors