Timezone: »
We introduce a practical way of introducing convolutional structure into Gaussian processes, which makes them better suited to high-dimensional inputs like images than existing kernels. The main contribution of our work is the construction of an inter-domain inducing point approximation that is well-tailored to the convolutional kernel. This allows us to gain the generalisation benefit of a convolutional kernel, together with fast but accurate posterior inference. We investigate several variations of the convolutional kernel, and apply it to MNIST and CIFAR-10 that have been known to be challenging for Gaussian processes. We also show how the marginal likelihood can be used to find an optimal weighting between convolutional and RBF kernels to further improve performance. We hope this illustration of the usefulness of a marginal likelihood will help to automate discovering architectures in larger models.
Author Information
Mark van der Wilk (University of Cambridge)
Carl Edward Rasmussen (University of Cambridge)
James Hensman (PROWLER.io)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Convolutional Gaussian Processes »
Thu. Dec 7th 02:30 -- 06:30 AM Room Pacific Ballroom #196
More from the Same Authors
-
2022 : Gaussian Process parameterized Covariance Kernels for Non-stationary Regression »
Vidhi Lalchand · Talay Cheema · Laurence Aitchison · Carl Edward Rasmussen -
2022 Poster: Sparse Gaussian Process Hyperparameters: Optimize or Integrate? »
Vidhi Lalchand · Wessel Bruinsma · David Burt · Carl Edward Rasmussen -
2021 Poster: Kernel Identification Through Transformers »
Fergus Simpson · Ian Davies · Vidhi Lalchand · Alessandro Vullo · Nicolas Durrande · Carl Edward Rasmussen -
2021 Poster: Marginalised Gaussian Processes with Nested Sampling »
Fergus Simpson · Vidhi Lalchand · Carl Edward Rasmussen -
2020 : Combining variational autoencoder representations with structural descriptors improves prediction of docking scores »
Miguel Garcia-Ortegon · Carl Edward Rasmussen · Hiroshi Kajino -
2020 Poster: Ensembling geophysical models with Bayesian Neural Networks »
Ushnish Sengupta · Matt Amos · Scott Hosking · Carl Edward Rasmussen · Matthew Juniper · Paul Young -
2019 Poster: Pseudo-Extended Markov chain Monte Carlo »
Christopher Nemeth · Fredrik Lindsten · Maurizio Filippone · James Hensman -
2018 Poster: Gaussian Process Conditional Density Estimation »
Vincent Dutordoir · Hugh Salimbeni · James Hensman · Marc Deisenroth -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: Learning Invariances using the Marginal Likelihood »
Mark van der Wilk · Matthias Bauer · ST John · James Hensman -
2017 Poster: Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs »
Rowan McAllister · Carl Edward Rasmussen -
2017 Poster: Identification of Gaussian Process State Space Models »
Stefanos Eleftheriadis · Tom Nicholson · Marc Deisenroth · James Hensman -
2016 Poster: Understanding Probabilistic Sparse Gaussian Process Approximations »
Matthias Bauer · Mark van der Wilk · Carl Edward Rasmussen -
2015 Poster: MCMC for Variationally Sparse Gaussian Processes »
James Hensman · Alexander Matthews · Maurizio Filippone · Zoubin Ghahramani -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2014 Poster: Variational Gaussian Process State-Space Models »
Roger Frigola · Yutian Chen · Carl Edward Rasmussen -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC »
Roger Frigola · Fredrik Lindsten · Thomas Schön · Carl Edward Rasmussen -
2013 Session: Tutorial Session A »
James Hensman -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2012 Poster: Fast Variational Inference in the Conjugate Exponential Family »
James Hensman · Magnus Rattray · Neil D Lawrence -
2011 Poster: Gaussian Process Training with Input Noise »
Andrew McHutchon · Carl Edward Rasmussen -
2011 Poster: Additive Gaussian Processes »
David Duvenaud · Hannes Nickisch · Carl Edward Rasmussen -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters -
2006 Tutorial: Advances in Gaussian Processes »
Carl Edward Rasmussen