Timezone: »
We bring the tools from Blackwell's seminal result on comparing two stochastic experiments, to shine new lights on the modern applications of great interest: generative adversarial networks (GAN). Binary hypothesis testing is at the center of GANs, and we propose new data processing inequalities that allows us to discover new algorithms to combat mode collapse, provide sharper analyses, and provide simpler proofs. This leads to a new architecture to handle one of the major challenges in GAN known as ``mode collapse''; the lack of diversity in the samples generated by the learned generators. The hypothesis testing view of GAN allows us to analyze the new architecture and show that it encourages generators with no mode collapse. Experimental results show that the proposed architecture can learn to generate samples with diversity that is orders of magnitude better than competing approaches, while being simpler. For this talk, I will assume no prior background on GANs.
Author Information
Sewoong Oh (UIUC)
More from the Same Authors
-
2017 Poster: Optimal Sample Complexity of M-wise Data for Top-K Ranking »
Minje Jang · Sunghyun Kim · Changho Suh · Sewoong Oh -
2017 Poster: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Poster: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Spotlight: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Spotlight: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Poster: Discovering Potential Correlations via Hypercontractivity »
Hyeji Kim · Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2016 Poster: Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation »
Weihao Gao · Sewoong Oh · Pramod Viswanath -
2016 Poster: Computational and Statistical Tradeoffs in Learning to Rank »
Ashish Khetan · Sewoong Oh -
2016 Poster: Achieving budget-optimality with adaptive schemes in crowdsourcing »
Ashish Khetan · Sewoong Oh -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Secure Multi-party Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2015 Poster: Collaboratively Learning Preferences from Ordinal Data »
Sewoong Oh · Kiran Thekumparampil · Jiaming Xu -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Provable Tensor Factorization with Missing Data »
Prateek Jain · Sewoong Oh -
2014 Poster: Extremal Mechanisms for Local Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Poster: Minimax-optimal Inference from Partial Rankings »
Bruce Hajek · Sewoong Oh · Jiaming Xu -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh