Timezone: »
Posters
Reihaneh Rabbany · Tianxi Li · Jacob Carroll · Yin Cheng Ng · Xueyu Mao · Alexandre Hollocou · Jeric Briones · James Atwood · John Santerre · Natalie Klein · Pranamesh Chakraborty · Zahra Razaee · Chandan Singh · Arun Suggala · Beilun Wang · Andrew R. Lawrence · Aditya Grover · FARSHAD HARIRCHI · radhika arava · Qing Zhou · Takatomi Kubo · Josue Orellana · Govinda Kamath · Vivek Kumar Bagaria
Fri Dec 08 05:20 PM -- 06:00 PM (PST) @
Author Information
Reihaneh Rabbany (Carnegie Mellon University)
Tianxi Li (University of Michigan)
Jacob Carroll (Virginia Tech)
Yin Cheng Ng (University College London)
Xueyu Mao (University of Texas at Austin)
Alexandre Hollocou (INRIA, PARIS)
Jeric Briones (Nara Institute of Science and Technology)
James Atwood (Google Brain)
John Santerre (SMU)
Natalie Klein (Carnegie Mellon University)
Pranamesh Chakraborty (Iowa State University)
Zahra Razaee (UCLA)
Chandan Singh (UC Berkeley)
Arun Suggala (Carnegie Mellon University)
Beilun Wang (University of Virginia)
Andrew R. Lawrence (University of Bath)
Aditya Grover (Stanford University)
FARSHAD HARIRCHI (University of Michigan)
radhika arava (Amazon Development Center, Hyderabad)
Qing Zhou (UCLA)
Takatomi Kubo (NAIST)
Takatomi Kubo received his bachelor's degree in medicine from Osaka University, Japan, in 2002 and his Ph.D. degree in engineering from Nara Institute of Science and Technology (NAIST), Japan, in 2012. He is currently a Research Associate Professor of Graduate School of Information Science, NAIST. His research interests include neuro-engineering, computational neuroscience, and machine learning.
Josue Orellana (Carnegie Mellon University)
Govinda Kamath (Stanford University)
Vivek Kumar Bagaria (Stanford University)
More from the Same Authors
-
2021 : Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 : Cundy, Grover, Ermon - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 Oral: Moser Flow: Divergence-based Generative Modeling on Manifolds »
Noam Rozen · Aditya Grover · Maximilian Nickel · Yaron Lipman -
2021 Poster: Adaptive wavelet distillation from neural networks through interpretations »
Wooseok Ha · Chandan Singh · Francois Lanusse · Srigokul Upadhyayula · Bin Yu -
2021 Poster: Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2021 Poster: PiRank: Scalable Learning To Rank via Differentiable Sorting »
Robin Swezey · Aditya Grover · Bruno Charron · Stefano Ermon -
2021 Poster: Moser Flow: Divergence-based Generative Modeling on Manifolds »
Noam Rozen · Aditya Grover · Maximilian Nickel · Yaron Lipman -
2021 Poster: BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2020 : Contributed Talk: Reset-Free Lifelong Learning with Skill-Space Planning »
Kevin Lu · Aditya Grover · Pieter Abbeel · Igor Mordatch -
2020 Poster: Follow the Perturbed Leader: Optimism and Fast Parallel Algorithms for Smooth Minimax Games »
Arun Suggala · Praneeth Netrapalli -
2020 Poster: Generalized Boosting »
Arun Suggala · Bingbin Liu · Pradeep Ravikumar -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 : Poster session »
Jindong Gu · Alice Xiang · Atoosa Kasirzadeh · Zhiwei Han · Omar U. Florez · Frederik Harder · An-phi Nguyen · Amir Hossein Akhavan Rahnama · Michele Donini · Dylan Slack · Junaid Ali · Paramita Koley · Michiel Bakker · Anna Hilgard · Hailey James · Gonzalo Ramos · Jialin Lu · Jingying Yang · Margarita Boyarskaya · Martin Pawelczyk · Kacper Sokol · Mimansa Jaiswal · Umang Bhatt · David Alvarez-Melis · Aditya Grover · Charles Marx · Mengjiao (Sherry) Yang · Jingyan Wang · Gökhan Çapan · Hanchen Wang · Steffen Grünewälder · Moein Khajehnejad · Gourab Patro · Russell Kunes · Samuel Deng · Yuanting Liu · Luca Oneto · Mengze Li · Thomas Weber · Stefan Matthes · Duy Patrick Tu -
2019 Poster: On the (In)fidelity and Sensitivity of Explanations »
Chih-Kuan Yeh · Cheng-Yu Hsieh · Arun Suggala · David Inouye · Pradeep Ravikumar -
2019 Poster: Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting »
Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon -
2019 Poster: Globally optimal score-based learning of directed acyclic graphs in high-dimensions »
Bryon Aragam · Arash Amini · Qing Zhou -
2018 : Panel »
Paroma Varma · Aditya Grover · Will Hamilton · Jessica Hamrick · Thomas Kipf · Marinka Zitnik -
2018 Workshop: Relational Representation Learning »
Aditya Grover · Paroma Varma · Frederic Sala · Christopher Ré · Jennifer Neville · Stefano Ermon · Steven Holtzen -
2018 : Detecting switching causal interactions using hierarchical segmentation approach »
Jeric Briones -
2018 : Poster Session »
Lorenzo Masoero · Tammo Rukat · Runjing Liu · Sayak Ray Chowdhury · Daniel Coelho de Castro · Claudia Wehrhahn · Feras Saad · Archit Verma · Kelvin Hsu · Irineo Cabreros · Sandhya Prabhakaran · Yiming Sun · Maxime Rischard · Linfeng Liu · Adam Farooq · Jeremiah Liu · Melanie F. Pradier · Diego Romeres · Neill Campbell · Kai Xu · Mehmet M Dundar · Tucker Keuter · Prashnna Gyawali · Eli Sennesh · Alessandro De Palma · Daniel Flam-Shepherd · Takatomi Kubo -
2018 Poster: Streamlining Variational Inference for Constraint Satisfaction Problems »
Aditya Grover · Tudor Achim · Stefano Ermon -
2018 Poster: Bayesian Semi-supervised Learning with Graph Gaussian Processes »
Yin Cheng Ng · Nicolò Colombo · Ricardo Silva -
2018 Poster: Overlapping Clustering Models, and One (class) SVM to Bind Them All »
Xueyu Mao · Purnamrita Sarkar · Deepayan Chakrabarti -
2018 Poster: Connecting Optimization and Regularization Paths »
Arun Suggala · Adarsh Prasad · Pradeep Ravikumar -
2018 Spotlight: Overlapping Clustering Models, and One (class) SVM to Bind Them All »
Xueyu Mao · Purnamrita Sarkar · Deepayan Chakrabarti -
2017 : The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala -
2017 : Contributed talk: Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks »
Jack Lanchantin · Ritambhara Singh · Beilun Wang -
2017 : Contributed talk 4: Graphite: Iterative Generative Modeling of Graphs »
Aditya Grover -
2017 : Estimating Mixed Memberships with Sharp Eigenvector Deviations »
Xueyu Mao -
2017 : A Data-Driven Sparse-Learning Approach to Model Reduction in Chemical Reaction Networks »
FARSHAD HARIRCHI -
2017 : Edge Exchangeable Temporal Network Models »
Yin Cheng Ng -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar -
2017 Poster: Probabilistic Rule Realization and Selection »
Haizi Yu · Tianxi Li · Lav Varshney -
2016 Poster: Variational Bayes on Monte Carlo Steroids »
Aditya Grover · Stefano Ermon -
2016 Poster: Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages »
Yin Cheng Ng · Pawel M Chilinski · Ricardo Silva -
2014 Poster: Augmentative Message Passing for Traveling Salesman Problem and Graph Partitioning »
Mohsen Ravanbakhsh · Reihaneh Rabbany · Russell Greiner