Timezone: »
When we observe a point cloud in the Euclidean space, the persistent homology of the upper level sets filtration of the density is one of the most important tools to understand topological features of the data generating distribution. The persistent homology of KDEs (kernel density estimators) for the density function is a natural way to estimate the target quantity. In practice, however, calculating the persistent homology of KDEs on d-dimensional Euclidean spaces requires to approximate the ambient space to a grid, which could be computationally inefficient when the dimension of the ambient space is high or topological features are in different scales. In this abstract, we consider the persistent homologies of KDE filtrations on Rips complexes as alternative estimators. We show consistency results for both the persistent homology of the upper level sets filtration of the density and its simplified version. We also describe a novel methodology to construct an asymptotic confidence set based on the bootstrap procedure. Unlike existing procedures, our method does not heavily rely on grid-approximations, scales to higher dimensions, and is adaptive to heterogeneous topological features.
Author Information
Jaehyeok Shin (Carnegie Mellon University)
Alessandro Rinaldo (CMU)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Detecting Abrupt Changes in Sequential Pairwise Comparison Data »
Wanshan Li · Alessandro Rinaldo · Daren Wang -
2022 Poster: Detecting Abrupt Changes in Sequential Pairwise Comparison Data »
Wanshan Li · Alessandro Rinaldo · Daren Wang -
2021 Poster: Lattice partition recovery with dyadic CART »
OSCAR HERNAN MADRID PADILLA · Yi Yu · Alessandro Rinaldo -
2019 Poster: Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection »
Xiaoyi Gu · Leman Akoglu · Alessandro Rinaldo -
2019 Poster: Are sample means in multi-armed bandits positively or negatively biased? »
Jaehyeok Shin · Aaditya Ramdas · Alessandro Rinaldo -
2019 Spotlight: Are sample means in multi-armed bandits positively or negatively biased? »
Jaehyeok Shin · Aaditya Ramdas · Alessandro Rinaldo -
2017 Poster: A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening »
Kevin Lin · James Sharpnack · Alessandro Rinaldo · Ryan Tibshirani -
2016 Poster: Statistical Inference for Cluster Trees »
Jisu KIM · Yen-Chi Chen · Sivaraman Balakrishnan · Alessandro Rinaldo · Larry Wasserman -
2013 Poster: Cluster Trees on Manifolds »
Sivaraman Balakrishnan · Srivatsan Narayanan · Alessandro Rinaldo · Aarti Singh · Larry Wasserman -
2012 Workshop: Algebraic Topology and Machine Learning »
Sivaraman Balakrishnan · Alessandro Rinaldo · Donald Sheehy · Aarti Singh · Larry Wasserman -
2011 Poster: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Spotlight: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh