Timezone: »
Optimal transport (OT) provides a powerful and flexible way to compare probability measures, discrete and continuous, which includes therefore point clouds, histograms, datasets, parametric and generative models. Originally proposed in the eighteenth century, this theory later led to Nobel Prizes for Koopmans and Kantorovich as well as Villani’s Fields Medal in 2010. OT recently has reached the machine learning community, because it can tackle challenging learning scenarios including dimensionality reduction, structured prediction problems that involve histogram outputs, and estimation of generative models such as GANs in highly degenerate, high-dimensional problems. Despite very recent successes bringing OT from theory to practice, OT remains challenging for the machine learning community because of its mathematical formality. This tutorial will introduce in an approachable way crucial theoretical, computational, algorithmic and practical aspects of OT needed for machine learning applications.
Author Information
Marco Cuturi (Google Brain & CREST - ENSAE)
Marco Cuturi is a research scientist at Apple, in Paris. He received his Ph.D. in 11/2005 from the Ecole des Mines de Paris in applied mathematics. Before that he graduated from National School of Statistics (ENSAE) with a master degree (MVA) from ENS Cachan. He worked as a post-doctoral researcher at the Institute of Statistical Mathematics, Tokyo, between 11/2005 and 3/2007 and then in the financial industry between 4/2007 and 9/2008. After working at the ORFE department of Princeton University as a lecturer between 2/2009 and 8/2010, he was at the Graduate School of Informatics of Kyoto University between 9/2010 and 9/2016 as a tenured associate professor. He joined ENSAE in 9/2016 as a professor, where he is now working part-time. He was at Google between 10/2018 and 1/2022. His main employment is now with Apple, since 1/2022, as a research scientist working on fundamental aspects of machine learning.
Justin Solomon (MIT)
More from the Same Authors
-
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Poster: Supervised Training of Conditional Monge Maps »
Charlotte Bunne · Andreas Krause · Marco Cuturi -
2022 Poster: Efficient and Modular Implicit Differentiation »
Mathieu Blondel · Quentin Berthet · Marco Cuturi · Roy Frostig · Stephan Hoyer · Felipe Llinares-Lopez · Fabian Pedregosa · Jean-Philippe Vert -
2022 Poster: Low-rank Optimal Transport: Approximation, Statistics and Debiasing »
Meyer Scetbon · Marco Cuturi -
2021 Workshop: Optimal Transport and Machine Learning »
Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova -
2021 Poster: Object DGCNN: 3D Object Detection using Dynamic Graphs »
Yue Wang · Justin Solomon -
2021 Poster: Large-Scale Wasserstein Gradient Flows »
Petr Mokrov · Alexander Korotin · Lingxiao Li · Aude Genevay · Justin Solomon · Evgeny Burnaev -
2021 Poster: MarioNette: Self-Supervised Sprite Learning »
Dmitriy Smirnov · MICHAEL GHARBI · Matthew Fisher · Vitor Guizilini · Alexei Efros · Justin Solomon -
2021 Poster: Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark »
Alexander Korotin · Lingxiao Li · Aude Genevay · Justin Solomon · Alexander Filippov · Evgeny Burnaev -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Learning with Differentiable Pertubed Optimizers »
Quentin Berthet · Mathieu Blondel · Olivier Teboul · Marco Cuturi · Jean-Philippe Vert · Francis Bach -
2020 Poster: Continuous Regularized Wasserstein Barycenters »
Lingxiao Li · Aude Genevay · Mikhail Yurochkin · Justin Solomon -
2020 Poster: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Poster: Linear Time Sinkhorn Divergences using Positive Features »
Meyer Scetbon · Marco Cuturi -
2020 Oral: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Session: Orals & Spotlights Track 21: Optimization »
Peter Richtarik · Marco Cuturi -
2019 Workshop: Optimal Transport for Machine Learning »
Marco Cuturi · Gabriel Peyré · Rémi Flamary · Alexandra Suvorikova -
2019 Poster: Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections »
Boris Muzellec · Marco Cuturi -
2019 Poster: PRNet: Self-Supervised Learning for Partial-to-Partial Registration »
Yue Wang · Justin Solomon -
2019 Poster: Differentiable Ranking and Sorting using Optimal Transport »
Marco Cuturi · Olivier Teboul · Jean-Philippe Vert -
2019 Spotlight: Differentiable Ranking and Sorting using Optimal Transport »
Marco Cuturi · Olivier Teboul · Jean-Philippe Vert -
2019 Poster: Alleviating Label Switching with Optimal Transport »
Pierre Monteiller · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin Solomon · Mikhail Yurochkin -
2019 Poster: Hierarchical Optimal Transport for Document Representation »
Mikhail Yurochkin · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin Solomon -
2019 Poster: Tree-Sliced Variants of Wasserstein Distances »
Tam Le · Makoto Yamada · Kenji Fukumizu · Marco Cuturi -
2018 Poster: Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport »
Theo Lacombe · Marco Cuturi · Steve OUDOT -
2018 Poster: Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions »
Boris Muzellec · Marco Cuturi -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Poster: Parallel Streaming Wasserstein Barycenters »
Matt Staib · Sebastian Claici · Justin Solomon · Stefanie Jegelka -
2016 Workshop: Time Series Workshop »
Oren Anava · Marco Cuturi · Azadeh Khaleghi · Vitaly Kuznetsov · Sasha Rakhlin -
2016 Poster: Wasserstein Training of Restricted Boltzmann Machines »
Grégoire Montavon · Klaus-Robert Müller · Marco Cuturi -
2016 Poster: Stochastic Optimization for Large-scale Optimal Transport »
Aude Genevay · Marco Cuturi · Gabriel Peyré · Francis Bach -
2015 Poster: Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric »
Vivien Seguy · Marco Cuturi -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman -
2013 Poster: Sinkhorn Distances: Lightspeed Computation of Optimal Transport »
Marco Cuturi -
2013 Spotlight: Sinkhorn Distances: Lightspeed Computation of Optimal Transport »
Marco Cuturi -
2009 Poster: White Functionals for Anomaly Detection in Dynamical Systems »
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont -
2006 Poster: Kernels on Structured Objects Through Nested Histograms »
Marco Cuturi · Kenji Fukumizu