Timezone: »
There has been recent very exciting advances in (deep) reinforcement learning, particularly in the areas of games and robotics. Yet perhaps the largest impact could come when reinforcement learning systems interact with people. In this tutorial we will discuss work on reinforcement learning for helping and assisting people, and frameworks and approaches for enabling people helping reinforcement learning. We will cover
Background on reinforcement learning. Reinforcement learning for people-focused applications Approaches for enabling people to assist reinforcement learners
A number of the ideas presented here will also be relevant to many high stakes reinforcement learning systems.
Target audience: The majority of the tutorial will be aimed at an audience who has a basic machine learning background (e.g. as acquired by a class or equivalent).
Learning objectives: Know some of the key technical challenges that arise for reinforcement learning in people-focusing domains; understand some of the algorithms and approaches that have been developed to address these challenges; become familiar with some of the other application areas that have also or can also benefit from reinforcement learning.
Author Information
Emma Brunskill (Stanford University)
More from the Same Authors
-
2020 Poster: Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding »
Hongseok Namkoong · Ramtin Keramati · Steve Yadlowsky · Emma Brunskill -
2020 Poster: Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2020 Poster: Provably Good Batch Reinforcement Learning Without Great Exploration »
Yao Liu · Adith Swaminathan · Alekh Agarwal · Emma Brunskill -
2019 Poster: Offline Contextual Bandits with High Probability Fairness Guarantees »
Blossom Metevier · Stephen Giguere · Sarah Brockman · Ari Kobren · Yuriy Brun · Emma Brunskill · Philip Thomas -
2019 Poster: Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model »
Andrea Zanette · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: Limiting Extrapolation in Linear Approximate Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2018 Poster: Representation Balancing MDPs for Off-policy Policy Evaluation »
Yao Liu · Omer Gottesman · Aniruddh Raghu · Matthieu Komorowski · Aldo Faisal · Finale Doshi-Velez · Emma Brunskill -
2018 Demonstration: Automatic Curriculum Generation Applied to Teaching Novices a Short Bach Piano Segment »
Emma Brunskill · Tong Mu · Karan Goel · Jonathan Bragg -
2017 Poster: Using Options and Covariance Testing for Long Horizon Off-Policy Policy Evaluation »
Zhaohan Guo · Philip S. Thomas · Emma Brunskill -
2017 Poster: Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning »
Christoph Dann · Tor Lattimore · Emma Brunskill -
2017 Spotlight: Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning »
Christoph Dann · Tor Lattimore · Emma Brunskill