Timezone: »

 
Workshop
Hierarchical Reinforcement Learning
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa

Sat Dec 09 08:00 AM -- 06:30 PM (PST) @ Grand Ballroom A
Event URL: https://sites.google.com/view/hrlnips2017 »

Reinforcement Learning (RL) has become a powerful tool for tackling complex sequential decision-making problems. It has been shown to train agents to reach super-human capabilities in game-playing domains such as Go and Atari. RL can also learn advanced control policies in high-dimensional robotic systems. Nevertheless, current RL agents have considerable difficulties when facing sparse rewards, long planning horizons, and more generally a scarcity of useful supervision signals. Unfortunately, the most valuable control tasks are specified in terms of high-level instructions, implying sparse rewards when formulated as an RL problem. Internal spatio-temporal abstractions and memory structures can constrain the decision space, improving data efficiency in the face of scarcity, but are likewise challenging for a supervisor to teach.

Hierarchical Reinforcement Learning (HRL) is emerging as a key component for finding spatio-temporal abstractions and behavioral patterns that can guide the discovery of useful large-scale control architectures, both for deep-network representations and for analytic and optimal-control methods. HRL has the potential to accelerate planning and exploration by identifying skills that can reliably reach desirable future states. It can abstract away the details of low-level controllers to facilitate long-horizon planning and meta-learning in a high-level feature space. Hierarchical structures are modular and amenable to separation of training efforts, reuse, and transfer. By imitating a core principle of human cognition, hierarchies hold promise for interpretability and explainability.

There is a growing interest in HRL methods for structure discovery, planning, and learning, as well as HRL systems for shared learning and policy deployment. The goal of this workshop is to improve cohesion and synergy among the research community and increase its impact by promoting better understanding of the challenges and potential of HRL. This workshop further aims to bring together researchers studying both theoretical and practical aspects of HRL, for a joint presentation, discussion, and evaluation of some of the numerous novel approaches to HRL developed in recent years.

Author Information

Andrew G Barto (University of Massachusetts)
Doina Precup (McGill University / DeepMind Montreal)
Shie Mannor (Technion)
Tom Schaul (DeepMind)
Roy Fox (UC Berkeley)
Roy Fox

[Roy Fox](royf.org) is an Assistant Professor and director of the Intelligent Dynamics Lab at the Department of Computer Science at UCI. His research interests include theory and applications of reinforcement learning, algorithmic game theory, information theory, and robotics. His current research focuses on structure, exploration, and optimization in deep reinforcement learning and imitation learning of virtual and physical agents and multi-agent systems. He was previously a postdoc at UC Berkeley, where he developed algorithms and systems that interact with humans to learn structured control policies for robotics and program synthesis.

Carlos Florensa (UC Berkeley)

More from the Same Authors