Timezone: »
Reinforcement Learning (RL) has become a powerful tool for tackling complex sequential decision-making problems. It has been shown to train agents to reach super-human capabilities in game-playing domains such as Go and Atari. RL can also learn advanced control policies in high-dimensional robotic systems. Nevertheless, current RL agents have considerable difficulties when facing sparse rewards, long planning horizons, and more generally a scarcity of useful supervision signals. Unfortunately, the most valuable control tasks are specified in terms of high-level instructions, implying sparse rewards when formulated as an RL problem. Internal spatio-temporal abstractions and memory structures can constrain the decision space, improving data efficiency in the face of scarcity, but are likewise challenging for a supervisor to teach.
Hierarchical Reinforcement Learning (HRL) is emerging as a key component for finding spatio-temporal abstractions and behavioral patterns that can guide the discovery of useful large-scale control architectures, both for deep-network representations and for analytic and optimal-control methods. HRL has the potential to accelerate planning and exploration by identifying skills that can reliably reach desirable future states. It can abstract away the details of low-level controllers to facilitate long-horizon planning and meta-learning in a high-level feature space. Hierarchical structures are modular and amenable to separation of training efforts, reuse, and transfer. By imitating a core principle of human cognition, hierarchies hold promise for interpretability and explainability.
There is a growing interest in HRL methods for structure discovery, planning, and learning, as well as HRL systems for shared learning and policy deployment. The goal of this workshop is to improve cohesion and synergy among the research community and increase its impact by promoting better understanding of the challenges and potential of HRL. This workshop further aims to bring together researchers studying both theoretical and practical aspects of HRL, for a joint presentation, discussion, and evaluation of some of the numerous novel approaches to HRL developed in recent years.
Author Information
Andrew G Barto (University of Massachusetts)
Doina Precup (McGill University / DeepMind Montreal)
Shie Mannor (Technion)
Tom Schaul (DeepMind)
Roy Fox (UC Berkeley)
[Roy Fox](http://roydfox.com/) is a postdoc at UC Berkeley working with [Ion Stoica](http://people.eecs.berkeley.edu/~istoica/) in the Real-Time Intelligent Secure Explainable lab ([RISELab](https://rise.cs.berkeley.edu/)), and with [Ken Goldberg](http://goldberg.berkeley.edu/) in the Laboratory for Automation Science and Engineering ([AUTOLAB](http://autolab.berkeley.edu/)). His research interests include reinforcement learning, dynamical systems, information theory, automation, and the connections between these fields. His current research focuses on automatic discovery of hierarchical control structures in deep reinforcement learning and in imitation learning of robotic tasks. Roy holds a MSc in Computer Science from the [Technion](http://www.cs.technion.ac.il/), under the supervision of [Moshe Tennenholtz](http://iew3.technion.ac.il/Home/Users/Moshet.phtml), and a PhD in Computer Science from the [Hebrew University](http://www.cs.huji.ac.il/), under the supervision of [Naftali Tishby](http://www.cs.huji.ac.il/~tishby/). He was an exchange PhD student with [Larry Abbott](http://www.cs.huji.ac.il/~tishby/) and [Liam Paninski](http://www.stat.columbia.edu/~liam/) at the [Center for Theoretical Neuroscience](http://www.neurotheory.columbia.edu/) at Columbia University, and a research intern at Microsoft Research.
Carlos Florensa (UC Berkeley)
More from the Same Authors
-
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 Workshop: The Challenges of Real World Reinforcement Learning »
Daniel Mankowitz · Gabriel Dulac-Arnold · Shie Mannor · Omer Gottesman · Anusha Nagabandi · Doina Precup · Timothy A Mann · Gabriel Dulac-Arnold -
2020 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Feryal Behbahani · Julie J Lee · Sara Zannone · Rui Ponte Costa · Blake Richards · Ida Momennejad · Doina Precup -
2020 Poster: Reward Propagation Using Graph Convolutional Networks »
Martin Klissarov · Doina Precup -
2020 Spotlight: Reward Propagation Using Graph Convolutional Networks »
Martin Klissarov · Doina Precup -
2020 Poster: An Equivalence between Loss Functions and Non-Uniform Sampling in Experience Replay »
Scott Fujimoto · David Meger · Doina Precup -
2020 Poster: Online Planning with Lookahead Policies »
Yonathan Efroni · Mohammad Ghavamzadeh · Shie Mannor -
2020 Poster: Forethought and Hindsight in Credit Assignment »
Veronica Chelu · Doina Precup · Hado van Hasselt -
2019 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Sara Zannone · Feryal Behbahani · Rui Ponte Costa · Claudia Clopath · Blake Richards · Doina Precup -
2019 Poster: Distributional Policy Optimization: An Alternative Approach for Continuous Control »
Chen Tessler · Guy Tennenholtz · Shie Mannor -
2019 Poster: Goal-conditioned Imitation Learning »
Yiming Ding · Carlos Florensa · Pieter Abbeel · Mariano Phielipp -
2019 Poster: Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Xiao-Wen Chang · Doina Precup -
2019 Poster: Value Propagation for Decentralized Networked Deep Multi-agent Reinforcement Learning »
Chao Qu · Shie Mannor · Huan Xu · Yuan Qi · Le Song · Junwu Xiong -
2018 Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control »
Leslie Kaelbling · Martin Riedmiller · Marc Toussaint · Igor Mordatch · Roy Fox · Tuomas Haarnoja -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Poster: Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning »
Tom Zahavy · Matan Haroush · Nadav Merlis · Daniel J Mankowitz · Shie Mannor -
2018 Poster: Learning Safe Policies with Expert Guidance »
Jessie Huang · Fa Wu · Doina Precup · Yang Cai -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2016 Workshop: Continual Learning and Deep Networks »
Razvan Pascanu · Mark Ring · Tom Schaul -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2016 Poster: Unifying Count-Based Exploration and Intrinsic Motivation »
Marc Bellemare · Sriram Srinivasan · Georg Ostrovski · Tom Schaul · David Saxton · Remi Munos -
2016 Poster: Learning to learn by gradient descent by gradient descent »
Marcin Andrychowicz · Misha Denil · Sergio Gómez · Matthew Hoffman · David Pfau · Tom Schaul · Nando de Freitas -
2015 Poster: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Spotlight: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Poster: Basis refinement strategies for linear value function approximation in MDPs »
Gheorghe Comanici · Doina Precup · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2014 Poster: Learning with Pseudo-Ensembles »
Philip Bachman · Ouais Alsharif · Doina Precup -
2014 Spotlight: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2012 Poster: Value Pursuit Iteration »
Amir-massoud Farahmand · Doina Precup -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Poster: Clustering via Dirichlet Process Mixture Models for Portable Skill Discovery »
Scott Niekum · Andrew G Barto -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2010 Poster: Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories »
George Konidaris · Scott R Kuindersma · Andrew G Barto · Roderic A Grupen -
2009 Poster: Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining »
George Konidaris · Andrew G Barto -
2009 Spotlight: Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining »
George Konidaris · Andrew G Barto -
2009 Poster: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2009 Spotlight: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2008 Poster: Bounding Performance Loss in Approximate MDP Homomorphisms »
Doina Precup · Jonathan Taylor Taylor · Prakash Panangaden -
2008 Poster: Skill Characterization Based on Betweenness »
Özgür Şimşek · Andrew G Barto -
2007 Workshop: Hierarchical Organization of Behavior: Computational, Psychological and Neural Perspectives (Part 2) »
Yael Niv · Matthew Botvinick · Andrew G Barto -
2007 Workshop: Hierarchical Organization of Behavior: Computational, Psychological and Neural Perspectives (Part 1) »
Yael Niv · Matthew Botvinick · Andrew G Barto