Timezone: »
Extreme classification is a rapidly growing research area focussing on multi-class and multi-label problems involving an extremely large number of labels. Many applications have been found in diverse areas ranging from language modelling to document tagging in NLP, face recognition to learning universal feature representations in computer vision, gene function prediction in bioinformatics, etc. Extreme classification has also opened up a new paradigm for ranking and recommendation by reformulating them as multi- label learning tasks where each item to be ranked or recommended is treated as a separate label. Such reformulations have led to significant gains over traditional collaborative filtering and content based recommendation techniques. Consequently, extreme classifiers have been deployed in many real-world applications in industry.
Extreme classification raises a number of interesting research questions including those related to:
* Large scale learning and distributed and parallel training
* Log-time and log-space prediction and prediction on a test-time budget
* Label embedding and tree based approaches
* Crowd sourcing, preference elicitation and other data gathering techniques
* Bandits, semi-supervised learning and other approaches for dealing with training set biases and label noise
* Bandits with an extremely large number of arms
* Fine-grained classification
* Zero shot learning and extensible output spaces
* Tackling label polysemy, synonymy and correlations
* Structured output prediction and multi-task learning
* Learning from highly imbalanced data
* Dealing with tail labels and learning from very few data points per label
* PU learning and learning from missing and incorrect labels
* Feature extraction, feature sharing, lazy feature evaluation, etc.
* Performance evaluation
* Statistical analysis and generalization bounds
* Applications to new domains
The workshop aims to bring together researchers interested in these areas to encourage discussion and improve upon the state-of-the-art in extreme classification. In particular, we aim to bring together researchers from the natural language processing, computer vision and core machine learning communities to foster interaction and collaboration. Several leading researchers will present invited talks detailing the latest advances in the area. We also seek extended abstracts presenting work in progress which will be reviewed for acceptance as a spotlight + poster or a talk. The workshop should be of interest to researchers in core supervised learning as well as application domains such as recommender systems, computer vision, computational advertising, information retrieval and natural language processing. We expect a healthy participation from both industry and academia.
Fri 9:00 a.m. - 9:05 a.m.
|
Introduction by Manik Varma
(
Talk
)
|
Manik Varma 🔗 |
Fri 9:05 a.m. - 9:35 a.m.
|
John Langford (MSR) on Dreaming Contextual Memory
(
Talk
)
|
John Langford 🔗 |
Fri 9:35 a.m. - 10:05 a.m.
|
Ed Chi (Google) on Learned Deep Retrieval for Recommenders
(
Talk
)
|
Ed Chi 🔗 |
Fri 10:05 a.m. - 10:35 a.m.
|
David Sontag (MIT) on Representation Learning for Extreme Multi-class Classification & Density Estimation
(
Talk
)
|
🔗 |
Fri 10:35 a.m. - 11:00 a.m.
|
Coffee Break
|
🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Inderjit Dhillon (UT Austin & Amazon) on Stabilizing Gradients for Deep Neural Networks with Applications to Extreme Classification
(
Talk
)
|
🔗 |
Fri 11:30 a.m. - 12:00 p.m.
|
Wei-cheng Chang (CMU) on Deep Learning Approach for Extreme Multi-label Text Classification
(
Talk
)
|
🔗 |
Fri 12:00 p.m. - 1:30 p.m.
|
Lunch
|
🔗 |
Fri 1:30 p.m. - 2:00 p.m.
|
Pradeep Ravikumar (CMU) on A Parallel Primal-Dual Sparse Method for Extreme Classification
(
Talk
)
|
Pradeep Ravikumar 🔗 |
Fri 2:00 p.m. - 2:15 p.m.
|
Maxim Grechkin (UW) on EZLearn: Exploiting Organic Supervision in Large-Scale Data Annotation
(
Talk
)
|
Maxim Grechkin 🔗 |
Fri 2:15 p.m. - 2:30 p.m.
|
Sayantan Dasgupta (Michigan) on Multi-label Learning for Large Text Corpora using Latent Variable Model
(
Talk
)
|
Sayantan Dasgupta 🔗 |
Fri 2:30 p.m. - 3:00 p.m.
|
Yukihiro Tagami (Yahoo) on Extreme Multi-label Learning via Nearest Neighbor Graph Partitioning and Embedding
(
Talk
)
|
Yukihiro Tagami 🔗 |
Fri 3:00 p.m. - 3:15 p.m.
|
Coffee Break
|
🔗 |
Fri 3:15 p.m. - 3:45 p.m.
|
Mehryar Mohri (NYU) on Tight Learning Bounds for Multi-Class Classification
(
Talk
)
|
Mehryar Mohri 🔗 |
Fri 3:45 p.m. - 4:00 p.m.
|
Ravi Ganti (Walmart Labs) on Exploiting Structure in Large Scale Bandit Problems
(
Talk
)
|
Ravi Ganti 🔗 |
Fri 4:00 p.m. - 4:15 p.m.
|
Hai S Le (WUSTL) on Precision-Recall versus Accuracy and the Role of Large Data Sets
(
Talk
)
|
Hai Le 🔗 |
Fri 4:15 p.m. - 4:30 p.m.
|
Loubna Benabbou (EMI) on A Reduction Principle for Generalizing Bona Fide Risk Bounds in Multi-class Seeting
(
Talk
)
|
Loubna BENABBOU 🔗 |
Fri 4:30 p.m. - 5:00 p.m.
|
Marius Kloft (Kaiserslautern) on Generalization Error Bounds for Extreme Multi-class Classification
(
Talk
)
|
Marius Kloft 🔗 |
Author Information
Manik Varma (Microsoft Research India)
Marius Kloft (TU Kaiserslautern)
Krzysztof Dembczynski (Poznan University of Technology)
More from the Same Authors
-
2021 : Hierarchical Topic Evaluation: Statistical vs. Neural Models »
Mayank Kumar Nagda · Charu Karakkaparambil James · Sophie Burkhardt · Marius Kloft -
2022 : Unsupervised Anomaly Detection for Auditing Data and Impact of Categorical Encodings. »
Ajay Chawda · Marius Kloft · Stefanie Grimm -
2022 Poster: Regret Bounds for Multilabel Classification in Sparse Label Regimes »
Róbert Busa-Fekete · Heejin Choi · Krzysztof Dembczynski · Claudio Gentile · Henry Reeve · Balazs Szorenyi -
2021 Poster: Fine-grained Generalization Analysis of Inductive Matrix Completion »
Antoine Ledent · Rodrigo Alves · Yunwen Lei · Marius Kloft -
2020 Poster: Sharper Generalization Bounds for Pairwise Learning »
Yunwen Lei · Antoine Ledent · Marius Kloft -
2020 Poster: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Spotlight: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 Poster: Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network »
Siqi Wang · Yijie Zeng · Xinwang Liu · En Zhu · Jianping Yin · Chuanfu Xu · Marius Kloft -
2018 Poster: A no-regret generalization of hierarchical softmax to extreme multi-label classification »
Marek Wydmuch · Kalina Jasinska-Kobus · Mikhail Kuznetsov · Róbert Busa-Fekete · Krzysztof Dembczynski -
2018 Poster: FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network »
Aditya Kusupati · Manish Singh · Kush Bhatia · Ashish Kumar · Prateek Jain · Manik Varma -
2017 : Marius Kloft (Kaiserslautern) on Generalization Error Bounds for Extreme Multi-class Classification »
Marius Kloft -
2017 : Introduction by Manik Varma »
Manik Varma -
2016 Workshop: Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Moustapha Cisse · Manik Varma · Samy Bengio -
2015 Workshop: Extreme Classification 2015: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Manik Varma · Moustapha M Cisse -
2015 Poster: Online F-Measure Optimization »
Róbert Busa-Fekete · Balázs Szörényi · Krzysztof Dembczynski · Eyke Hüllermeier -
2015 Poster: Sparse Local Embeddings for Extreme Multi-label Classification »
Kush Bhatia · Himanshu Jain · Purushottam Kar · Manik Varma · Prateek Jain -
2015 Poster: Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms »
Yunwen Lei · Urun Dogan · Alexander Binder · Marius Kloft -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: MLINI-13: Machine Learning and Interpretation in Neuroimaging (Day 2) »
Georg Langs · Brian Murphy · Kai-min K Chang · Paolo Avesani · James Haxby · Nikolaus Kriegeskorte · Susan Whitfield-Gabrieli · Irina Rish · Guillermo Cecchi · Raif Rustamov · Marius Kloft · Jonathan Young · Sina Ghiassian · Michael Coen -
2013 Workshop: MLINI-13: Machine Learning and Interpretation in Neuroimaging (Day 1) »
Georg Langs · Brian Murphy · Kai-min K Chang · Paolo Avesani · James Haxby · Nikolaus Kriegeskorte · Susan Whitfield-Gabrieli · Irina Rish · Guillermo Cecchi · Raif Rustamov · Marius Kloft · Jonathan Young · Sina Ghiassian · Michael Coen -
2013 Workshop: Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories »
Manik Varma · John Langford -
2013 Poster: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Spotlight: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2011 Poster: An Exact Algorithm for F-Measure Maximization »
Krzysztof Dembczynski · Willem Waegeman · Weiwei Cheng · Eyke Hullermeier -
2011 Poster: The Local Rademacher Complexity of Lp-Norm Multiple Kernel Learning »
Marius Kloft · Gilles Blanchard -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Spotlight: Multiple Kernel Learning and the SMO Algorithm »
S.V.N. Vishwanathan · Zhaonan sun · Nawanol T Ampornpunt · Manik Varma -
2010 Poster: Multiple Kernel Learning and the SMO Algorithm »
S.V.N. Vishwanathan · Zhaonan sun · Nawanol T Ampornpunt · Manik Varma -
2009 Poster: Efficient and Accurate Lp-Norm Multiple Kernel Learning »
Marius Kloft · Ulf Brefeld · Soeren Sonnenburg · Pavel Laskov · Klaus-Robert Müller · Alexander Zien