Timezone: »
Physical sciences span problems and challenges at all scales in the universe: from finding exoplanets and asteroids in trillions of sky-survey pixels, to automatic tracking of extreme weather phenomena in climate datasets, to detecting anomalies in event streams from the Large Hadron Collider at CERN. Tackling a number of associated data-intensive tasks, including, but not limited to, regression, classification, clustering, dimensionality reduction, likelihood-free inference, generative models, and experimental design are critical for furthering scientific discovery. The Deep Learning for Physical Sciences (DLPS) workshop invites researchers to contribute papers that demonstrate progress in the application of machine and deep learning techniques to real-world problems in physical sciences (including the fields and subfields of astronomy, chemistry, Earth science, and physics).
We will discuss research questions, practical implementation challenges, performance / scaling, and unique aspects of processing and analyzing scientific datasets. The target audience comprises members of the machine learning community who are interested in scientific applications and researchers in the physical sciences. By bringing together these two communities, we expect to strengthen dialogue, introduce exciting new open problems to the wider NIPS community, and stimulate production of new approaches to solving science problems. Invited talks from leading individuals from both communities will cover the state-of-the-art techniques and set the stage for this workshop.
Author Information
Atilim Gunes Baydin (University of Oxford)
Mr. Prabhat (LBL/NERSC)
Kyle Cranmer (New York University)
Kyle Cranmer is an Associate Professor of Physics at New York University and affiliated with NYU's Center for Data Science. He is an experimental particle physicists working, primarily, on the Large Hadron Collider, based in Geneva, Switzerland. He was awarded the Presidential Early Career Award for Science and Engineering in 2007 and the National Science Foundation's Career Award in 2009. Professor Cranmer developed a framework that enables collaborative statistical modeling, which was used extensively for the discovery of the Higgs boson in July, 2012. His current interests are at the intersection of physics and machine learning and include inference in the context of intractable likelihoods, development of machine learning models imbued with physics knowledge, adversarial training for robustness to systematic uncertainty, the use of generative models in the physical sciences, and integration of reproducible workflows in the inference pipeline.
Frank Wood (University of British Columbia)
Dr. Wood is an associate professor in the Department of Engineering Science at the University of Oxford. Before that he was an assistant professor of Statistics at Columbia University and a research scientist at the Columbia Center for Computational Learning Systems. He formerly was a postdoctoral fellow of the Gatsby Computational Neuroscience Unit of the University College London. He holds a PhD from Brown University (â07) and BS from Cornell University (â96), both in computer science. Dr. Wood is the original architect of both the Anglican and Probabilistic-C probabilistic programming systems. He conducts AI-driven research at the boundary of probabilistic programming, Bayesian modeling, and Monte Carlo methods. Dr. Wood holds 6 patents, has authored over 50 papers, received the AISTATS best paper award in 2009, and has been awarded faculty research awards from Xerox, Google and Amazon. Prior to his academic career he was a successful entrepreneur having run and sold the content-based image retrieval company ToFish! to AOL/Time Warner and served as CEO of Interfolio.
More from the Same Authors
-
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Flows for simultaneous manifold learning and density estimation »
Johann Brehmer · Kyle Cranmer -
2020 Poster: Discovering Symbolic Models from Deep Learning with Inductive Biases »
Miles Cranmer · Alvaro Sanchez Gonzalez · Peter Battaglia · Rui Xu · Kyle Cranmer · David Spergel · Shirley Ho -
2020 Poster: Set2Graph: Learning Graphs From Sets »
Hadar Serviansky · Nimrod Segol · Jonathan Shlomi · Kyle Cranmer · Eilam Gross · Haggai Maron · Yaron Lipman -
2020 Poster: Black-Box Optimization with Local Generative Surrogates »
Sergey Shirobokov · Vladislav Belavin · Michael Kagan · Andrei Ustyuzhanin · Atilim Gunes Baydin -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Program Transformations for ML »
Pascal Lamblin · Atilim Gunes Baydin · Alexander Wiltschko · Bart van Merriënboer · Emily Fertig · Barak Pearlmutter · David Duvenaud · Laurent Hascoet -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2017 Poster: Learning to Pivot with Adversarial Networks »
Gilles Louppe · Michael Kagan · Kyle Cranmer -
2017 Poster: ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events »
Evan Racah · Christopher Beckham · Tegan Maharaj · Samira Ebrahimi Kahou · Mr. Prabhat · Chris Pal -
2017 Poster: Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction »
Kristofer Bouchard · Alejandro Bujan · Farbod Roosta-Khorasani · Shashanka Ubaru · Mr. Prabhat · Antoine Snijders · Jian-Hua Mao · Edward Chang · Michael W Mahoney · Sharmodeep Bhattacharya -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2016 Invited Talk: Machine Learning and Likelihood-Free Inference in Particle Physics »
Kyle Cranmer -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2015 Poster: A Gaussian Process Model of Quasar Spectral Energy Distributions »
Andrew Miller · Albert Wu · Jeffrey Regier · Jon McAuliffe · Dustin Lang · Mr. Prabhat · David Schlegel · Ryan Adams -
2015 Tutorial: Probabilistic Programming »
Frank Wood -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2011 Poster: Hierarchically Supervised Latent Dirichlet Allocation »
Adler J Perotte · Frank Wood · Noemie Elhadad · Nicholas Bartlett -
2010 Spotlight: Probabilistic Deterministic Infinite Automata »
David Pfau · Nicholas Bartlett · Frank Wood -
2010 Poster: Probabilistic Deterministic Infinite Automata »
David Pfau · Nicholas Bartlett · Frank Wood -
2008 Poster: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2008 Spotlight: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2006 Poster: Particle Filtering for Nonparametric Bayesian Matrix Factorization »
Frank Wood · Tom Griffiths