Timezone: »
We present a novel deep neural network architecture for unsupervised subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the "self-expressiveness" property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. We further propose pre-training and fine-tuning strategies that let us effectively learn the parameters of our subspace clustering networks. Our experiments show that the proposed method significantly outperforms the state-of-the-art unsupervised subspace clustering methods.
Author Information
Pan Ji (NEC Labs America)
Tong Zhang (The Australian National University)
Hongdong Li (Australian National University)
Mathieu Salzmann (EPFL)
Ian Reid (University of Adelaide)
More from the Same Authors
-
2021 : SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation »
Robin Chan · Krzysztof Lis · Svenja Uhlemeyer · Hermann Blum · Sina Honari · Roland Siegwart · Pascal Fua · Mathieu Salzmann · Matthias Rottmann -
2022 Poster: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2023 Poster: Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? »
Xiaoxiao Sun · Nidham Gazagnadou · Vivek Sharma · Lingjuan Lyu · Hongdong Li · Liang Zheng -
2023 Poster: SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation »
Haobo Jiang · Mathieu Salzmann · Zheng Dang · Jin Xie · Jian Yang -
2023 Poster: DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via Physics Simulation »
Rong Wang · Wei Mao · Hongdong Li -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · Yongwei Chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 Poster: Robust Binary Models by Pruning Randomly-initialized Networks »
Chen Liu · Ziqi Zhao · Sabine Süsstrunk · Mathieu Salzmann -
2021 Poster: Distilling Image Classifiers in Object Detectors »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2021 Poster: Learning Transferable Adversarial Perturbations »
Krishna kanth Nakka · Mathieu Salzmann -
2020 Poster: TSPNet: Hierarchical Feature Learning via Temporal Semantic Pyramid for Sign Language Translation »
DONGXU LI · Chenchen Xu · Xin Yu · Kaihao Zhang · Benjamin Swift · Hanna Suominen · Hongdong Li -
2020 Poster: Hierarchical Neural Architecture Search for Deep Stereo Matching »
Xuelian Cheng · Yiran Zhong · Mehrtash Harandi · Yuchao Dai · Xiaojun Chang · Hongdong Li · Tom Drummond · Zongyuan Ge -
2020 Poster: Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation »
Jianyuan Wang · Yiran Zhong · Yuchao Dai · Kaihao Zhang · Pan Ji · Hongdong Li -
2020 Poster: On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them »
Chen Liu · Mathieu Salzmann · Tao Lin · Ryota Tomioka · Sabine Süsstrunk -
2020 Poster: ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2020 Spotlight: ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2019 Poster: Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks »
Vineet Kosaraju · Amir Sadeghian · Roberto Martín-Martín · Ian Reid · Hamid Rezatofighi · Silvio Savarese -
2019 Poster: Spatial-Aware Feature Aggregation for Image based Cross-View Geo-Localization »
Yujiao Shi · Liu Liu · Xin Yu · Hongdong Li -
2019 Poster: Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video »
Jiawang Bian · Zhichao Li · Naiyan Wang · Huangying Zhan · Chunhua Shen · Ming-Ming Cheng · Ian Reid -
2019 Poster: Backpropagation-Friendly Eigendecomposition »
Wei Wang · Zheng Dang · Yinlin Hu · Pascal Fua · Mathieu Salzmann -
2018 Poster: Adaptive Sampling Towards Fast Graph Representation Learning »
Wenbing Huang · Tong Zhang · Yu Rong · Junzhou Huang -
2017 Poster: Compression-aware Training of Deep Networks »
Jose Alvarez · Mathieu Salzmann -
2017 Poster: Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding »
Wenbing Huang · Mehrtash Harandi · Tong Zhang · Lijie Fan · Fuchun Sun · Junzhou Huang -
2017 Poster: A Bayesian Data Augmentation Approach for Learning Deep Models »
Toan Tran · Trung Pham · Gustavo Carneiro · Lyle Palmer · Ian Reid -
2016 Poster: Learning the Number of Neurons in Deep Networks »
Jose M. Alvarez · Mathieu Salzmann -
2015 Poster: Deeply Learning the Messages in Message Passing Inference »
Guosheng Lin · Chunhua Shen · Ian Reid · Anton van den Hengel