Timezone: »
The adoption of automated, data-driven decision making in an ever expanding range of applications has raised concerns about its potential unfairness towards certain social groups. In this context, a number of recent studies have focused on defining, detecting, and removing unfairness from data-driven decision systems. However, the existing notions of fairness, based on parity (equality) in treatment or outcomes for different social groups, tend to be quite stringent, limiting the overall decision making accuracy. In this paper, we draw inspiration from the fair-division and envy-freeness literature in economics and game theory and propose preference-based notions of fairness -- given the choice between various sets of decision treatments or outcomes, any group of users would collectively prefer its treatment or outcomes, regardless of the (dis)parity as compared to the other groups. Then, we introduce tractable proxies to design margin-based classifiers that satisfy these preference-based notions of fairness. Finally, we experiment with a variety of synthetic and real-world datasets and show that preference-based fairness allows for greater decision accuracy than parity-based fairness.
Author Information
Muhammad Bilal Zafar (Bosch Center for Artificial Intelligence)
Isabel Valera (MPI for Intelligent Systems)
Manuel Rodriguez (MPI SWS)
Krishna Gummadi (Max Planck Institute for Software Systems)
Adrian Weller (University of Cambridge)
Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, where he is also a Turing Fellow leading work on safe and ethical AI. He is a Principal Research Fellow in Machine Learning at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. He serves on several boards including the Centre for Data Ethics and Innovation. Previously, Adrian held senior roles in finance.
More from the Same Authors
-
2021 Spotlight: Auditing Black-Box Prediction Models for Data Minimization Compliance »
Bashir Rastegarpanah · Krishna Gummadi · Mark Crovella -
2021 : Reinforcement Learning Under Algorithmic Triage »
Eleni Straitouri · Adish Singla · Vahid Balazadeh Meresht · Manuel Rodriguez -
2022 Poster: Counterfactual Temporal Point Processes »
Kimia Noorbakhsh · Manuel Rodriguez -
2022 Poster: Scalable Infomin Learning »
Yanzhi Chen · weihao sun · Yingzhen Li · Adrian Weller -
2022 : Conformal Prediction for Resource Prioritisation in Predicting Rare and Dangerous Outcomes »
Varun Babbar · Umang Bhatt · Miri Zilka · Adrian Weller -
2023 Poster: Quasi-Monte Carlo Graph Random Features »
Isaac Reid · Adrian Weller · Krzysztof M Choromanski -
2023 Poster: Use perturbations when learning from explanations »
Juyeon Heo · Vihari Piratla · Matthew Wicker · Adrian Weller -
2023 Poster: Finding Counterfactually Optimal Action Sequences in Continuous State Spaces »
Stratis Tsirtsis · Manuel Rodriguez -
2023 Poster: Dense-Exponential Random Features: Sharp Positive Estimators of the Gaussian Kernel »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2023 Poster: Diffused Redundancy in Pre-trained Representations »
Vedant Nanda · Till Speicher · John Dickerson · Krishna Gummadi · Soheil Feizi · Adrian Weller -
2023 Poster: Controlling Text-to-Image Diffusion by Orthogonal Finetuning »
Zeju Qiu · Weiyang Liu · Haiwen Feng · Yuxuan Xue · Yao Feng · Zhen Liu · Dan Zhang · Adrian Weller · Bernhard Schölkopf -
2023 Poster: Human-Aligned Calibration for AI-Assisted Decision Making »
Nina Corvelo Benz · Manuel Rodriguez -
2023 Poster: Certification of Distributional Individual Fairness »
Matthew Wicker · Vihari Piratla · Adrian Weller -
2023 Poster: Learning to Receive Help: Intervention-Aware Concept Embedding Models »
Mateo Espinosa Zarlenga · Katie Collins · Krishnamurthy Dvijotham · Adrian Weller · Zohreh Shams · Mateja Jamnik -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Counterfactual Temporal Point Processes »
Kimia Noorbakhsh · Manuel Rodriguez -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Chefs' Random Tables: Non-Trigonometric Random Features »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2022 Poster: A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets »
Miri Zilka · Bradley Butcher · Adrian Weller -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2021 Workshop: Human Centered AI »
Michael Muller · Plamen P Angelov · Shion Guha · Marina Kogan · Gina Neff · Nuria Oliver · Manuel Rodriguez · Adrian Weller -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Auditing Black-Box Prediction Models for Data Minimization Compliance »
Bashir Rastegarpanah · Krishna Gummadi · Mark Crovella -
2021 Poster: Differentiable Learning Under Triage »
Nastaran Okati · Abir De · Manuel Rodriguez -
2021 Poster: Counterfactual Explanations in Sequential Decision Making Under Uncertainty »
Stratis Tsirtsis · Abir De · Manuel Rodriguez -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Ode to an ODE »
Krzysztof Choromanski · Jared Quincy Davis · Valerii Likhosherstov · Xingyou Song · Jean-Jacques Slotine · Jacob Varley · Honglak Lee · Adrian Weller · Vikas Sindhwani -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 : Invited talk #1 »
Krishna Gummadi -
2019 Workshop: Workshop on Human-Centric Machine Learning »
Plamen P Angelov · Nuria Oliver · Adrian Weller · Manuel Rodriguez · Isabel Valera · Silvia Chiappa · Hoda Heidari · Niki Kilbertus -
2019 Poster: Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models »
Yunfei Teng · Wenbo Gao · François Chalus · Anna Choromanska · Donald Goldfarb · Adrian Weller -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 : Manuel Gomez Rodriguez - Enhancing the Accuracy and Fairness of Human Decision Making »
Manuel Rodriguez -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Poster: Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making »
Hoda Heidari · Claudio Ferrari · Krishna Gummadi · Andreas Krause -
2017 : Invited talk: Challenges for Transparency »
Adrian Weller -
2017 : Closing remarks »
Adrian Weller -
2017 Symposium: Kinds of intelligence: types, tests and meeting the needs of society »
José Hernández-Orallo · Zoubin Ghahramani · Tomaso Poggio · Adrian Weller · Matthew Crosby -
2017 Poster: The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings »
Krzysztof Choromanski · Mark Rowland · Adrian Weller -
2017 Poster: Uprooting and Rerooting Higher-Order Graphical Models »
Mark Rowland · Adrian Weller -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Symposium: Machine Learning and the Law »
Adrian Weller · Thomas D. Grant · Conrad McDonnell · Jatinder Singh -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2014 Poster: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Oral: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara