Timezone: »
Low-rank matrix approximation (LRMA) methods have achieved excellent accuracy among today's collaborative filtering (CF) methods. In existing LRMA methods, the rank of user/item feature matrices is typically fixed, i.e., the same rank is adopted to describe all users/items. However, our studies show that submatrices with different ranks could coexist in the same user-item rating matrix, so that approximations with fixed ranks cannot perfectly describe the internal structures of the rating matrix, therefore leading to inferior recommendation accuracy. In this paper, a mixture-rank matrix approximation (MRMA) method is proposed, in which user-item ratings can be characterized by a mixture of LRMA models with different ranks. Meanwhile, a learning algorithm capitalizing on iterated condition modes is proposed to tackle the non-convex optimization problem pertaining to MRMA. Experimental studies on MovieLens and Netflix datasets demonstrate that MRMA can outperform six state-of-the-art LRMA-based CF methods in terms of recommendation accuracy.
Author Information
Dongsheng Li (IBM Research - China)
Kehan Chen (Tongji University)
Wei Liu (Tencent AI Lab)
Tun Lu (Fudan University)
Ning Gu (Fudan University)
Stephen Chu (IBM Research - China)
More from the Same Authors
-
2020 Poster: Towards Playing Full MOBA Games with Deep Reinforcement Learning »
Deheng Ye · Guibin Chen · Wen Zhang · Sheng Chen · Bo Yuan · Bo Liu · Jia Chen · Zhao Liu · Fuhao Qiu · Hongsheng Yu · Yinyuting Yin · Bei Shi · Liang Wang · Tengfei Shi · Qiang Fu · Wei Yang · Lanxiao Huang · Wei Liu -
2020 Poster: Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies »
Yuehua Zhu · Muli Yang · Cheng Deng · Wei Liu -
2020 Poster: Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization »
Yan Yan · Yi Xu · Qihang Lin · Wei Liu · Tianbao Yang -
2020 Spotlight: Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies »
Yuehua Zhu · Muli Yang · Cheng Deng · Wei Liu -
2020 Poster: Adversarial Learning for Robust Deep Clustering »
Xu Yang · Cheng Deng · Kun Wei · Junchi Yan · Wei Liu -
2019 Poster: Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos »
Yitian Yuan · Lin Ma · Jingwen Wang · Wei Liu · Wenwu Zhu -
2019 Poster: Cross-Modal Learning with Adversarial Samples »
CHAO LI · Shangqian Gao · Cheng Deng · De Xie · Wei Liu -
2019 Poster: Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation »
Qiming ZHANG · Jing Zhang · Wei Liu · Dacheng Tao -
2018 Poster: Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling »
Yunzhe Tao · Qi Sun · Qiang Du · Wei Liu -
2018 Poster: Generalizing Graph Matching beyond Quadratic Assignment Model »
Tianshu Yu · Junchi Yan · Yilin Wang · Wei Liu · baoxin Li -
2018 Poster: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation »
Wenqi Ren · Jiawei Zhang · Lin Ma · Jinshan Pan · Xiaochun Cao · Wangmeng Zuo · Wei Liu · Ming-Hsuan Yang -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2018 Poster: Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential Learning »
Xing Yan · Weizhong Zhang · Lin Ma · Wei Liu · Qi Wu -
2017 Poster: Geometric Descent Method for Convex Composite Minimization »
Shixiang Chen · Shiqian Ma · Wei Liu -
2014 Poster: Discrete Graph Hashing »
Wei Liu · Cun Mu · Sanjiv Kumar · Shih-Fu Chang -
2014 Spotlight: Discrete Graph Hashing »
Wei Liu · Cun Mu · Sanjiv Kumar · Shih-Fu Chang -
2014 Poster: Zeta Hull Pursuits: Learning Nonconvex Data Hulls »
Yuanjun Xiong · Wei Liu · Deli Zhao · Xiaoou Tang