Timezone: »

 
Poster
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
Chris Junchi Li · Mengdi Wang · Tong Zhang

Tue Dec 05 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #49 #None

In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for PCA under the additional assumption of bounded samples.

Author Information

Chris Junchi Li (Tencent AI Lab)
Mengdi Wang (Princeton University)

Mengdi Wang is interested in data-driven stochastic optimization and applications in machine and reinforcement learning. She received her PhD in Electrical Engineering and Computer Science from Massachusetts Institute of Technology in 2013. At MIT, Mengdi was affiliated with the Laboratory for Information and Decision Systems and was advised by Dimitri P. Bertsekas. Mengdi became an assistant professor at Princeton in 2014. She received the Young Researcher Prize in Continuous Optimization of the Mathematical Optimization Society in 2016 (awarded once every three years).

Tong Zhang (Tencent AI Lab)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors