Timezone: »

 
Poster
Robust Hypothesis Test for Nonlinear Effect with Gaussian Processes
Jeremiah Liu · Brent Coull

Mon Dec 04 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #62
This work constructs a hypothesis test for detecting whether an data-generating function $h: \real^p \rightarrow \real$ belongs to a specific reproducing kernel Hilbert space $\mathcal{H}_0$, where the structure of $\mathcal{H}_0$ is only partially known. Utilizing the theory of reproducing kernels, we reduce this hypothesis to a simple one-sided score test for a scalar parameter, develop a testing procedure that is robust against the mis-specification of kernel functions, and also propose an ensemble-based estimator for the null model to guarantee test performance in small samples. To demonstrate the utility of the proposed method, we apply our test to the problem of detecting nonlinear interaction between groups of continuous features. We evaluate the finite-sample performance of our test under different data-generating functions and estimation strategies for the null model. Our results revealed interesting connection between notions in machine learning (model underfit/overfit) and those in statistical inference (i.e. Type I error/power of hypothesis test), and also highlighted unexpected consequences of common model estimating strategies (e.g. estimating kernel hyperparameters using maximum likelihood estimation) on model inference.

Author Information

Jeremiah Liu (Harvard University)
Brent Coull (Harvard University)

More from the Same Authors

  • 2021 : Reliable Graph Neural Networks for Drug Discovery Under Distributional Shift »
    Kehang Han · Balaji Lakshminarayanan · Jeremiah Liu
  • 2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
    Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran
  • 2021 : Deep Classifiers with Label Noise Modeling and Distance Awareness »
    Vincent Fortuin · Mark Collier · Florian Wenzel · James Allingham · Jeremiah Liu · Dustin Tran · Balaji Lakshminarayanan · Jesse Berent · Rodolphe Jenatton · Effrosyni Kokiopoulou
  • 2022 Poster: Towards a Unified Framework for Uncertainty-aware Nonlinear Variable Selection with Theoretical Guarantees »
    Wenying Deng · Beau Coker · Rajarshi Mukherjee · Jeremiah Zhe Liu · Brent Coull
  • 2020 Poster: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness »
    Jeremiah Liu · Zi Lin · Shreyas Padhy · Dustin Tran · Tania Bedrax Weiss · Balaji Lakshminarayanan
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak
  • 2019 Poster: Accurate Uncertainty Estimation and Decomposition in Ensemble Learning »
    Jeremiah Liu · John Paisley · Marianthi-Anna Kioumourtzoglou · Brent Coull
  • 2018 : Poster Session »
    Lorenzo Masoero · Tammo Rukat · Runjing Liu · Sayak Ray Chowdhury · Daniel Coelho de Castro · Claudia Wehrhahn · Feras Saad · Archit Verma · Kelvin Hsu · Irineo Cabreros · Sandhya Prabhakaran · Yiming Sun · Maxime Rischard · Linfeng Liu · Adam Farooq · Jeremiah Liu · Melanie F. Pradier · Diego Romeres · Neill Campbell · Kai Xu · Mehmet M Dundar · Tucker Keuter · Prashnna Gyawali · Eli Sennesh · Alessandro De Palma · Daniel Flam-Shepherd · Takatomi Kubo