Timezone: »

Learning to Inpaint for Image Compression
Mohammad Haris Baig · Vladlen Koltun · Lorenzo Torresani

Tue Dec 05 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #122 #None

We study the design of deep architectures for lossy image compression. We present two architectural recipes in the context of multi-stage progressive encoders and empirically demonstrate their importance on compression performance. Specifically, we show that: 1) predicting the original image data from residuals in a multi-stage progressive architecture facilitates learning and leads to improved performance at approximating the original content and 2) learning to inpaint (from neighboring image pixels) before performing compression reduces the amount of information that must be stored to achieve a high-quality approximation. Incorporating these design choices in a baseline progressive encoder yields an average reduction of over 60% in file size with similar quality compared to the original residual encoder.

Author Information

Mohammad Haris Baig (Dartmouth College)
Vladlen Koltun (Intel Labs)
Lorenzo Torresani (Dartmouth/Facebook)

Lorenzo Torresani is an Associate Professor with tenure in the Computer Science Department at Dartmouth College and a Research Scientist at Facebook AI. He received a Laurea Degree in Computer Science with summa cum laude honors from the University of Milan (Italy) in 1996, and an M.S. and a Ph.D. in Computer Science from Stanford University in 2001 and 2005, respectively. In the past, he has worked at several industrial research labs including Microsoft Research Cambridge, Like.com and Digital Persona. His research interests are in computer vision and deep learning. He is the recipient of several awards, including a CVPR best student paper prize, a National Science Foundation CAREER Award, a Google Faculty Research Award, three Facebook Faculty Awards, and a Fulbright U.S. Scholar Award.

More from the Same Authors