Timezone: »
Consider a dataset where data is collected on multiple features of multiple individuals over multiple times. This type of data can be represented as a three dimensional individual/feature/time tensor and has become increasingly prominent in various areas of science. The tensor biclustering problem computes a subset of individuals and a subset of features whose signal trajectories over time lie in a low-dimensional subspace, modeling similarity among the signal trajectories while allowing different scalings across different individuals or different features. We study the information-theoretic limit of this problem under a generative model. Moreover, we propose an efficient spectral algorithm to solve the tensor biclustering problem and analyze its achievability bound in an asymptotic regime. Finally, we show the efficiency of our proposed method in several synthetic and real datasets.
Author Information
Soheil Feizi (University of Maryland, College Park)
Hamid Javadi (Rice University)
David Tse (Stanford University)
More from the Same Authors
-
2022 Poster: Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits »
Yifei Wang · Tavor Baharav · Yanjun Han · Jiantao Jiao · David Tse -
2019 Poster: Ultra Fast Medoid Identification via Correlated Sequential Halving »
Tavor Baharav · David Tse -
2018 Poster: Porcupine Neural Networks: Approximating Neural Network Landscapes »
Soheil Feizi · Hamid Javadi · Jesse Zhang · David Tse -
2018 Poster: A Convex Duality Framework for GANs »
Farzan Farnia · David Tse -
2017 Poster: NeuralFDR: Learning Discovery Thresholds from Hypothesis Features »
Fei Xia · Martin J Zhang · James Zou · David Tse -
2016 Poster: A Minimax Approach to Supervised Learning »
Farzan Farnia · David Tse -
2015 Poster: Discrete Rényi Classifiers »
Meisam Razaviyayn · Farzan Farnia · David Tse -
2014 Poster: Biclustering Using Message Passing »
Luke O'Connor · Soheil Feizi