Timezone: »
Screening is important for the diagnosis and treatment of a wide variety of diseases. A good screening policy should be personalized to the disease, to the features of the patient and to the dynamic history of the patient (including the history of screening). The growth of electronic health records data has led to the development of many models to predict the onset and progression of different diseases. However, there has been limited work to address the personalized screening for these different diseases. In this work, we develop the first framework to construct screening policies for a large class of disease models. The disease is modeled as a finite state stochastic process with an absorbing disease state. The patient observes an external information process (for instance, self-examinations, discovering comorbidities, etc.) which can trigger the patient to arrive at the clinician earlier than scheduled screenings. The clinician carries out the tests; based on the test results and the external information it schedules the next arrival. Computing the exactly optimal screening policy that balances the delay in the detection against the frequency of screenings is computationally intractable; this paper provides a computationally tractable construction of an approximately optimal policy. As an illustration, we make use of a large breast cancer data set. The constructed policy screens patients more or less often according to their initial risk -- it is personalized to the features of the patient -- and according to the results of previous screens – it is personalized to the history of the patient. In comparison with existing clinical policies, the constructed policy leads to large reductions (28-68 %) in the number of screens performed while achieving the same expected delays in disease detection.
Author Information
Kartik Ahuja (University of California, Los Angeles)
William Zame (UCLA)
Mihaela van der Schaar (UCLA and Oxford University)
More from the Same Authors
-
2021 Spotlight: Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization »
Kartik Ahuja · Ethan Caballero · Dinghuai Zhang · Jean-Christophe Gagnon-Audet · Yoshua Bengio · Ioannis Mitliagkas · Irina Rish -
2022 : Empirical Study on Optimizer Selection for Out-of-Distribution Generalization »
Hiroki Naganuma · Kartik Ahuja · Ioannis Mitliagkas · Shiro Takagi · Tetsuya Motokawa · Rio Yokota · Kohta Ishikawa · Ikuro Sato -
2022 : Object-centric causal representation learning »
Amin Mansouri · Jason Hartford · Kartik Ahuja · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2023 Poster: Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning »
Amit Dhurandhar · Karthikeyan Natesan Ramamurthy · Kartik Ahuja · Vijay Arya -
2023 Poster: Reusable Slotwise Mechanisms »
Trang Nguyen · Amin Mansouri · Kanika Madan · Khuong Duy Nguyen · Kartik Ahuja · Dianbo Liu · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Closing Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 : FL Games: A Federated Learning Framework for Distribution Shifts »
Sharut Gupta · Kartik Ahuja · Mohammad Havaei · Niladri Chatterjee · Yoshua Bengio -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 : Opening Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 Poster: Weakly Supervised Representation Learning with Sparse Perturbations »
Kartik Ahuja · Jason Hartford · Yoshua Bengio -
2021 : Invited talk #5: Mihaela van der Schaar »
Mihaela van der Schaar -
2021 Poster: Adversarial Feature Desensitization »
Pouya Bashivan · Reza Bayat · Adam Ibrahim · Kartik Ahuja · Mojtaba Faramarzi · Touraj Laleh · Blake Richards · Irina Rish -
2021 Poster: Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization »
Kartik Ahuja · Ethan Caballero · Dinghuai Zhang · Jean-Christophe Gagnon-Audet · Yoshua Bengio · Ioannis Mitliagkas · Irina Rish -
2020 : Q&A for invited speaker, Mihaela van der Schaar »
Mihaela van der Schaar -
2020 : Interpretable AutoML: Powering the machine learning revolution in healthcare in the era of Covid-19 and beyond »
Mihaela van der Schaar -
2019 Poster: Attentive State-Space Modeling of Disease Progression »
Ahmed Alaa · Mihaela van der Schaar -
2019 Poster: Demystifying Black-box Models with Symbolic Metamodels »
Ahmed Alaa · Mihaela van der Schaar -
2019 Poster: Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate »
James Jordon · Jinsung Yoon · Mihaela van der Schaar -
2019 Poster: Conditional Independence Testing using Generative Adversarial Networks »
Alexis Bellot · Mihaela van der Schaar -
2019 Spotlight: Conditional Independence Testing using Generative Adversarial Networks »
Alexis Bellot · Mihaela van der Schaar -
2018 Poster: Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks »
Bryan Lim · Ahmed Alaa · Mihaela van der Schaar -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 Poster: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed Alaa · Mihaela van der Schaar -
2017 Spotlight: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed Alaa · Mihaela van der Schaar -
2017 Poster: Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes »
Ahmed Alaa · Mihaela van der Schaar