Timezone: »
Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD), the resulting distance between distributions, are useful tools for fully nonparametric two-sample testing and learning on distributions. However, it is rarely that all possible differences between samples are of interest -- discovered differences can be due to different types of measurement noise, data collection artefacts or other irrelevant sources of variability. We propose distances between distributions which encode invariance to additive symmetric noise, aimed at testing whether the assumed true underlying processes differ. Moreover, we construct invariant features of distributions, leading to learning algorithms robust to the impairment of the input distributions with symmetric additive noise.
Author Information
Ho Chung Law (University of Oxford)
Christopher Yau (University of Oxford)
Dino Sejdinovic (University of Oxford)
More from the Same Authors
-
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Deconditional Downscaling with Gaussian Processes »
Siu Lun Chau · Shahine Bouabid · Dino Sejdinovic -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2018 : Hyperparameter Learning via Distributional Transfer »
Ho Chung Law -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Variational Learning on Aggregate Outputs with Gaussian Processes »
Ho Chung Law · Dino Sejdinovic · Ewan Cameron · Tim Lucas · Seth Flaxman · Katherine Battle · Kenji Fukumizu -
2018 Poster: Hamiltonian Variational Auto-Encoder »
Anthony Caterini · Arnaud Doucet · Dino Sejdinovic -
2014 Poster: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2014 Spotlight: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau