Timezone: »
Linear regression models have been successfully used to function estimation and model selection in high-dimensional data analysis. However, most existing methods are built on least squares with the mean square error (MSE) criterion, which are sensitive to outliers and their performance may be degraded for heavy-tailed noise. In this paper, we go beyond this criterion by investigating the regularized modal regression from a statistical learning viewpoint. A new regularized modal regression model is proposed for estimation and variable selection, which is robust to outliers, heavy-tailed noise, and skewed noise. On the theoretical side, we establish the approximation estimate for learning the conditional mode function, the sparsity analysis for variable selection, and the robustness characterization. On the application side, we applied our model to successfully improve the cognitive impairment prediction using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort data.
Author Information
Xiaoqian Wang (University of Pittsburgh)
Hong Chen (University of Pittsburgh)
Weidong Cai (The University of Sydney)
Dinggang Shen (UNC-Chapel Hill)
Heng Huang (University of Pittsburgh)
More from the Same Authors
-
2022 : FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings »
Junyi Li · Heng Huang -
2022 : Cooperation or Competition: Avoiding Player Domination for Multi-target Robustness by Adaptive Budgets »
Yimu Wang · Dinghuai Zhang · Yihan Wu · Heng Huang · Hongyang Zhang -
2022 Poster: MetricFormer: A Unified Perspective of Correlation Exploring in Similarity Learning »
Jiexi Yan · Erkun Yang · Cheng Deng · Heng Huang -
2022 Poster: Enhanced Bilevel Optimization via Bregman Distance »
Feihu Huang · Junyi Li · Shangqian Gao · Heng Huang -
2021 Poster: Optimal Underdamped Langevin MCMC Method »
Zhengmian Hu · Feihu Huang · Heng Huang -
2021 Poster: Fast Training Method for Stochastic Compositional Optimization Problems »
Hongchang Gao · Heng Huang -
2021 Poster: SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients »
Feihu Huang · Junyi Li · Heng Huang -
2021 Poster: Efficient Mirror Descent Ascent Methods for Nonsmooth Minimax Problems »
Feihu Huang · Xidong Wu · Heng Huang -
2021 Poster: A Faster Decentralized Algorithm for Nonconvex Minimax Problems »
Wenhan Xian · Feihu Huang · Yanfu Zhang · Heng Huang -
2019 Poster: Curvilinear Distance Metric Learning »
Shuo Chen · Lei Luo · Jian Yang · Chen Gong · Jun Li · Heng Huang -
2018 Poster: Bilevel Distance Metric Learning for Robust Image Recognition »
Jie Xu · Lei Luo · Cheng Deng · Heng Huang -
2018 Poster: Training Neural Networks Using Features Replay »
Zhouyuan Huo · Bin Gu · Heng Huang -
2018 Spotlight: Training Neural Networks Using Features Replay »
Zhouyuan Huo · Bin Gu · Heng Huang -
2017 Poster: Group Sparse Additive Machine »
Hong Chen · Xiaoqian Wang · Cheng Deng · Heng Huang -
2017 Poster: Learning A Structured Optimal Bipartite Graph for Co-Clustering »
Feiping Nie · Xiaoqian Wang · Cheng Deng · Heng Huang -
2016 Poster: Error Analysis of Generalized Nyström Kernel Regression »
Hong Chen · Haifeng Xia · Heng Huang · Weidong Cai -
2015 Poster: Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis »
Ehsan Adeli-Mosabbeb · Kim-Han Thung · Le An · Feng Shi · Dinggang Shen