Timezone: »
As datasets grow richer, an important challenge is to leverage the full features in the data to maximize the number of useful discoveries while controlling for false positives. We address this problem in the context of multiple hypotheses testing, where for each hypothesis, we observe a p-value along with a set of features specific to that hypothesis. For example, in genetic association studies, each hypothesis tests the correlation between a variant and the trait. We have a rich set of features for each variant (e.g. its location, conservation, epigenetics etc.) which could inform how likely the variant is to have a true association. However popular testing approaches, such as Benjamini-Hochberg's procedure (BH) and independent hypothesis weighting (IHW), either ignore these features or assume that the features are categorical. We propose a new algorithm, NeuralFDR, which automatically learns a discovery threshold as a function of all the hypothesis features. We parametrize the discovery threshold as a neural network, which enables flexible handling of multi-dimensional discrete and continuous features as well as efficient end-to-end optimization. We prove that NeuralFDR has strong false discovery rate (FDR) guarantees, and show that it makes substantially more discoveries in synthetic and real datasets. Moreover, we demonstrate that the learned discovery threshold is directly interpretable.
Author Information
Fei Xia (Stanford University)
Martin J Zhang (Stanford University)
James Zou (Stanford)
David Tse (Stanford University)
More from the Same Authors
-
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : Data-driven subgroup identification for linear regression »
Zachary Izzo · Ruishan Liu · James Zou -
2022 : Is Unsupervised Performance Estimation Impossible When Both Covariates and Labels shift? »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2022 : Provable Re-Identification Privacy »
Zachary Izzo · Jinsung Yoon · Sercan Arik · James Zou -
2022 : Recommendation for New Drugs with Limited Prescription Data »
Zhenbang Wu · Huaxiu Yao · Zhe Su · David Liebovitz · Lucas Glass · James Zou · Chelsea Finn · Jimeng Sun -
2022 : An Electrocardiogram-Based Risk Score for Cardiovascular Mortality »
John Hughes · David Ouyang · Pierre Elias · James Zou · Euan Ashley · Marco Perez -
2022 : An Electrocardiogram-Based Risk Score for Cardiovascular Mortality »
John Hughes · David Ouyang · Pierre Elias · James Zou · Euan Ashley · Marco Perez -
2022 Poster: Estimating and Explaining Model Performance When Both Covariates and Labels Shift »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Poster: SkinCon: A skin disease dataset densely annotated by domain experts for fine-grained debugging and analysis »
Roxana Daneshjou · Mert Yuksekgonul · Zhuo Ran Cai · Roberto Novoa · James Zou -
2022 Poster: HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions »
Lingjiao Chen · Zhihua Jin · Evan Sabri Eyuboglu · Christopher Ré · Matei Zaharia · James Zou -
2022 Poster: Uncalibrated Models Can Improve Human-AI Collaboration »
Kailas Vodrahalli · Tobias Gerstenberg · James Zou -
2022 Poster: Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits »
Yifei Wang · Tavor Baharav · Yanjun Han · Jiantao Jiao · David Tse -
2022 Poster: C-Mixup: Improving Generalization in Regression »
Huaxiu Yao · Yiping Wang · Linjun Zhang · James Zou · Chelsea Finn -
2022 Poster: Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Victor Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2022 Poster: WeightedSHAP: analyzing and improving Shapley based feature attributions »
Yongchan Kwon · James Zou -
2021 Poster: Adversarial Training Helps Transfer Learning via Better Representations »
Zhun Deng · Linjun Zhang · Kailas Vodrahalli · Kenji Kawaguchi · James Zou -
2020 Session: Orals & Spotlights Track 02: COVID/Health/Bio Applications »
Tristan Naumann · James Zou -
2019 Poster: Making AI Forget You: Data Deletion in Machine Learning »
Antonio Ginart · Melody Guan · Gregory Valiant · James Zou -
2019 Spotlight: Making AI Forget You: Data Deletion in Machine Learning »
Antonio Ginart · Melody Guan · Gregory Valiant · James Zou -
2019 Poster: Ultra Fast Medoid Identification via Correlated Sequential Halving »
Tavor Baharav · David Tse -
2018 Poster: Porcupine Neural Networks: Approximating Neural Network Landscapes »
Soheil Feizi · Hamid Javadi · Jesse Zhang · David Tse -
2018 Poster: A Convex Duality Framework for GANs »
Farzan Farnia · David Tse -
2017 Workshop: Machine Learning in Computational Biology »
James Zou · Anshul Kundaje · Gerald Quon · Nicolo Fusi · Sara Mostafavi -
2017 Poster: Tensor Biclustering »
Soheil Feizi · Hamid Javadi · David Tse -
2016 Poster: A Minimax Approach to Supervised Learning »
Farzan Farnia · David Tse -
2015 Poster: Discrete Rényi Classifiers »
Meisam Razaviyayn · Farzan Farnia · David Tse