Timezone: »
This paper studies empirical risk minimization (ERM) problems for large-scale datasets and incorporates the idea of adaptive sample size methods to improve the guaranteed convergence bounds for first-order stochastic and deterministic methods. In contrast to traditional methods that attempt to solve the ERM problem corresponding to the full dataset directly, adaptive sample size schemes start with a small number of samples and solve the corresponding ERM problem to its statistical accuracy. The sample size is then grown geometrically -- e.g., scaling by a factor of two -- and use the solution of the previous ERM as a warm start for the new ERM. Theoretical analyses show that the use of adaptive sample size methods reduces the overall computational cost of achieving the statistical accuracy of the whole dataset for a broad range of deterministic and stochastic first-order methods. The gains are specific to the choice of method. When particularized to, e.g., accelerated gradient descent and stochastic variance reduce gradient, the computational cost advantage is a logarithm of the number of training samples. Numerical experiments on various datasets confirm theoretical claims and showcase the gains of using the proposed adaptive sample size scheme.
Author Information
Aryan Mokhtari (University of Pennsylvania)
Alejandro Ribeiro (University of Pennsylvania)
More from the Same Authors
-
2021 : State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning with Rewards »
Miguel Calvo-Fullana · Santiago Paternain · Alejandro Ribeiro -
2022 : Convolutional Neural Networks on Manifolds: From Graphs and Back »
Zhiyang Wang · Luana Ruiz · Alejandro Ribeiro -
2022 Poster: A Lagrangian Duality Approach to Active Learning »
Juan Elenter · Navid Naderializadeh · Alejandro Ribeiro -
2022 Poster: coVariance Neural Networks »
Saurabh Sihag · Gonzalo Mateos · Corey McMillan · Alejandro Ribeiro -
2021 Poster: Adversarial Robustness with Semi-Infinite Constrained Learning »
Alexander Robey · Luiz Chamon · George J. Pappas · Hamed Hassani · Alejandro Ribeiro -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Graphon Neural Networks and the Transferability of Graph Neural Networks »
Luana Ruiz · Luiz Chamon · Alejandro Ribeiro -
2020 Poster: Probably Approximately Correct Constrained Learning »
Luiz Chamon · Alejandro Ribeiro -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Constrained Reinforcement Learning Has Zero Duality Gap »
Santiago Paternain · Luiz Chamon · Miguel Calvo-Fullana · Alejandro Ribeiro -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2017 Poster: Approximate Supermodularity Bounds for Experimental Design »
Luiz Chamon · Alejandro Ribeiro -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro