Timezone: »
Poster
Model-Powered Conditional Independence Test
Rajat Sen · Ananda Theertha Suresh · Karthikeyan Shanmugam · Alexandros Dimakis · Sanjay Shakkottai
We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution $f(x,y,z)$ of continuous random vectors $X,Y$ and $Z,$ we determine whether $X \independent Y \vert Z$. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifiers like gradient-boosted trees and deep neural networks. These models can handle complex probability distributions and allow us to perform significantly better compared to the prior state of the art, for high-dimensional CI testing. The main technical challenge in the classification problem is the need for samples from the conditional product distribution $f^{CI}(x,y,z) = f(x|z)f(y|z)f(z)$ -- the joint distribution if and only if $X \independent Y \vert Z.$ -- when given access only to i.i.d. samples from the true joint distribution $f(x,y,z)$. To tackle this problem we propose a novel nearest neighbor bootstrap procedure and theoretically show that our generated samples are indeed close to $f^{CI}$ in terms of total variational distance. We then develop theoretical results regarding the generalization bounds for classification for our problem, which translate into error bounds for CI testing. We provide a novel analysis of Rademacher type classification bounds in the presence of non-i.i.d \textit{near-independent} samples. We empirically validate the performance of our algorithm on simulated and real datasets and show performance gains over previous methods.
Author Information
Rajat Sen (University of Texas at Austin)
Ananda Theertha Suresh (Google)
Karthikeyan Shanmugam (IBM Research, NY)
Alex Dimakis (University of Texas, Austin)
Sanjay Shakkottai (The University of Texas at Austin)
More from the Same Authors
-
2020 Poster: SMYRF - Efficient Attention using Asymmetric Clustering »
Giannis Daras · Nikita Kitaev · Augustus Odena · Alexandros Dimakis -
2020 Poster: Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions »
Matthew Faw · Rajat Sen · Karthikeyan Shanmugam · Constantine Caramanis · Sanjay Shakkottai -
2020 Poster: Applications of Common Entropy for Causal Inference »
Murat Kocaoglu · Sanjay Shakkottai · Alexandros Dimakis · Constantine Caramanis · Sriram Vishwanath -
2020 Poster: Exactly Computing the Local Lipschitz Constant of ReLU Networks »
Matt Jordan · Alexandros Dimakis -
2020 Poster: Learning discrete distributions: user vs item-level privacy »
Yuhan Liu · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Michael D Riley -
2020 Poster: Robust compressed sensing using generative models »
Ajil Jalal · Liu Liu · Alexandros Dimakis · Constantine Caramanis -
2019 Workshop: Information Theory and Machine Learning »
Shengjia Zhao · Jiaming Song · Yanjun Han · Kristy Choi · Pratyusha Kalluri · Ben Poole · Alexandros Dimakis · Jiantao Jiao · Tsachy Weissman · Stefano Ermon -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alexandros Dimakis · Deanna Needell -
2019 Poster: Inverting Deep Generative models, One layer at a time »
Qi Lei · Ajil Jalal · Inderjit Dhillon · Alexandros Dimakis -
2019 Poster: Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting »
Rajat Sen · Hsiang-Fu Yu · Inderjit Dhillon -
2019 Poster: Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes »
Matt Jordan · Justin Lewis · Alexandros Dimakis -
2019 Poster: Primal-Dual Block Generalized Frank-Wolfe »
Qi Lei · JIACHENG ZHUO · Constantine Caramanis · Inderjit Dhillon · Alexandros Dimakis -
2019 Poster: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alexandros Dimakis -
2019 Spotlight: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alexandros Dimakis -
2019 Poster: Sampled Softmax with Random Fourier Features »
Ankit Singh Rawat · Jiecao Chen · Felix Xinnan Yu · Ananda Theertha Suresh · Sanjiv Kumar -
2019 Poster: Blocking Bandits »
Soumya Basu · Rajat Sen · Sujay Sanghavi · Sanjay Shakkottai -
2019 Poster: Differentially Private Anonymized Histograms »
Ananda Theertha Suresh -
2019 Poster: Learning Distributions Generated by One-Layer ReLU Networks »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi -
2018 Poster: Experimental Design for Cost-Aware Learning of Causal Graphs »
Erik Lindgren · Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2018 Poster: Data Amplification: A Unified and Competitive Approach to Property Estimation »
Yi Hao · Alon Orlitsky · Ananda Theertha Suresh · Yihong Wu -
2018 Poster: cpSGD: Communication-efficient and differentially-private distributed SGD »
Naman Agarwal · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2018 Spotlight: cpSGD: Communication-efficient and differentially-private distributed SGD »
Naman Agarwal · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alexandros Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2017 Poster: Experimental Design for Learning Causal Graphs with Latent Variables »
Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2017 Poster: Streaming Weak Submodularity: Interpreting Neural Networks on the Fly »
Ethan Elenberg · Alexandros Dimakis · Moran Feldman · Amin Karbasi -
2017 Poster: Multiscale Quantization for Fast Similarity Search »
Xiang Wu · Ruiqi Guo · Ananda Theertha Suresh · Sanjiv Kumar · Daniel Holtmann-Rice · David Simcha · Felix Yu -
2017 Oral: Streaming Weak Submodularity: Interpreting Neural Networks on the Fly »
Ethan Elenberg · Alexandros Dimakis · Moran Feldman · Amin Karbasi -
2016 Poster: Leveraging Sparsity for Efficient Submodular Data Summarization »
Erik Lindgren · Shanshan Wu · Alexandros Dimakis -
2016 Poster: Single Pass PCA of Matrix Products »
Shanshan Wu · Srinadh Bhojanapalli · Sujay Sanghavi · Alexandros Dimakis -
2016 Poster: Regret of Queueing Bandits »
Subhashini Krishnasamy · Rajat Sen · Ramesh Johari · Sanjay Shakkottai -
2015 Poster: Orthogonal NMF through Subspace Exploration »
Megasthenis Asteris · Dimitris Papailiopoulos · Alexandros Dimakis -
2015 Poster: Sparse PCA via Bipartite Matchings »
Megasthenis Asteris · Dimitris Papailiopoulos · Anastasios Kyrillidis · Alexandros Dimakis -
2015 Poster: Learning Causal Graphs with Small Interventions »
Karthikeyan Shanmugam · Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2014 Poster: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alexandros Dimakis · Adam Klivans -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alexandros Dimakis -
2014 Oral: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alexandros Dimakis · Adam Klivans