Timezone: »
Computing the partition function is a key inference task in many graphical models. In this paper, we propose a dynamic importance sampling scheme that provides anytime finite-sample bounds for the partition function. Our algorithm balances the advantages of the three major inference strategies, heuristic search, variational bounds, and Monte Carlo methods, blending sampling with search to refine a variationally defined proposal. Our algorithm combines and generalizes recent work on anytime search and probabilistic bounds of the partition function. By using an intelligently chosen weighted average over the samples, we construct an unbiased estimator of the partition function with strong finite-sample confidence intervals that inherit both the rapid early improvement rate of sampling with the long-term benefits of an improved proposal from search. This gives significantly improved anytime behavior, and more flexible trade-offs between memory, time, and solution quality. We demonstrate the effectiveness of our approach empirically on real-world problem instances taken from recent UAI competitions.
Author Information
Qi Lou (UCI)
Rina Dechter (UCI)
Alexander Ihler (UC Irvine)
More from the Same Authors
-
2021 : Temporal-Difference Value Estimation via Uncertainty-Guided Soft Updates »
Litian Liang · Yaosheng Xu · Stephen McAleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2019 Poster: Counting the Optimal Solutions in Graphical Models »
Radu Marinescu · Rina Dechter -
2019 Spotlight: Counting the Optimal Solutions in Graphical Models »
Radu Marinescu · Rina Dechter -
2018 Poster: Lifted Weighted Mini-Bucket »
Nicholas Gallo · Alexander Ihler -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2016 Poster: Learning Infinite RBMs with Frank-Wolfe »
Wei Ping · Qiang Liu · Alexander Ihler -
2015 : Discussion Panel with Morning Speakers (Day 1) »
Pedro Domingos · Stephen H Muggleton · Rina Dechter · Josh Tenenbaum -
2015 : Unifying Symbolic and Probabilistic Reasoning via Mixed Graphical Models »
Rina Dechter -
2015 Poster: Probabilistic Variational Bounds for Graphical Models »
Qiang Liu · John Fisher III · Alexander Ihler -
2015 Poster: Decomposition Bounds for Marginal MAP »
Wei Ping · Qiang Liu · Alexander Ihler -
2014 Poster: Distributed Estimation, Information Loss and Exponential Families »
Qiang Liu · Alexander Ihler -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? »
Qiang Liu · Alexander Ihler · Mark Steyvers -
2013 Spotlight: Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? »
Qiang Liu · Alexander Ihler · Mark Steyvers -
2013 Poster: Variational Planning for Graph-based MDPs »
Qiang Cheng · Qiang Liu · Feng Chen · Alexander Ihler -
2012 Poster: Variational Inference for Crowdsourcing »
Qiang Liu · Jian Peng · Alexander Ihler -
2009 Poster: Particle-based Variational Inference for Continuous Systems »
Alexander Ihler · Andrew Frank · Padhraic Smyth -
2006 Poster: Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models »
Alexander Ihler · Padhraic Smyth