Timezone: »
Then detection and identification of extreme weather events in large-scale climate simulations is an important problem for risk management, informing governmental policy decisions and advancing our basic understanding of the climate system. Recent work has shown that fully supervised convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-known types of extreme weather events when large amounts of labeled data are available. However, many different types of spatially localized climate patterns are of interest including hurricanes, extra-tropical cyclones, weather fronts, and blocking events among others. Existing labeled data for these patterns can be incomplete in various ways, such as covering only certain years or geographic areas and having false negatives. This type of climate data therefore poses a number of interesting machine learning challenges. We present a multichannel spatiotemporal CNN architecture for semi-supervised bounding box prediction and exploratory data analysis. We demonstrate that our approach is able to leverage temporal information and unlabeled data to improve the localization of extreme weather events. Further, we explore the representations learned by our model in order to better understand this important data. We present a dataset, ExtremeWeather, to encourage machine learning research in this area and to help facilitate further work in understanding and mitigating the effects of climate change. The dataset is available at extremeweatherdataset.github.io and the code is available at https://github.com/eracah/hur-detect.
Author Information
Evan Racah (Mila, Université de Montréal)
Christopher Beckham (MILA)
Tegan Maharaj (MILA, Polytechnic Montreal)
Samira Ebrahimi Kahou (Microsoft Research – Maluuba)
Mr. Prabhat (LBL/NERSC)
Chris Pal (MILA, Polytechnique Montréal, Element AI)
More from the Same Authors
-
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Promoting Coordination through Policy Regularization in Multi-Agent Deep Reinforcement Learning »
Julien Roy · Paul Barde · Félix Harvey · Derek Nowrouzezahrai · Chris Pal -
2020 Poster: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Spotlight: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior in Reinforcement Learning »
Harm Van Seijen · Hadi Nekoei · Evan Racah · Sarath Chandar -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Poster: Unsupervised State Representation Learning in Atari »
Ankesh Anand · Evan Racah · Sherjil Ozair · Yoshua Bengio · Marc-Alexandre Côté · R Devon Hjelm -
2019 Poster: Neural Multisensory Scene Inference »
Jae Hyun Lim · Pedro O. Pinheiro · Negar Rostamzadeh · Chris Pal · Sungjin Ahn -
2019 Poster: On Adversarial Mixup Resynthesis »
Christopher Beckham · Sina Honari · Alex Lamb · Vikas Verma · Farnoosh Ghadiri · R Devon Hjelm · Yoshua Bengio · Chris Pal -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2018 Poster: Towards Deep Conversational Recommendations »
Raymond Li · Samira Ebrahimi Kahou · Hannes Schulz · Vincent Michalski · Laurent Charlin · Chris Pal -
2018 Poster: Unsupervised Depth Estimation, 3D Face Rotation and Replacement »
Joel Ruben Antony Moniz · Christopher Beckham · Simon Rajotte · Sina Honari · Chris Pal -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2017 Workshop: Deep Learning for Physical Sciences »
Atilim Gunes Baydin · Mr. Prabhat · Kyle Cranmer · Frank Wood -
2017 Poster: Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction »
Kristofer Bouchard · Alejandro Bujan · Farbod Roosta-Khorasani · Shashanka Ubaru · Mr. Prabhat · Antoine Snijders · Jian-Hua Mao · Edward Chang · Michael W Mahoney · Sharmodeep Bhattacharya -
2015 Poster: A Gaussian Process Model of Quasar Spectral Energy Distributions »
Andrew Miller · Albert Wu · Jeffrey Regier · Jon McAuliffe · Dustin Lang · Mr. Prabhat · David Schlegel · Ryan Adams