Timezone: »

Poster
Near Optimal Sketching of Low-Rank Tensor Regression
Xingguo Li · Jarvis Haupt · David Woodruff

Tue Dec 05 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #207
We study the least squares regression problem $\min_{\Theta \in \RR^{p_1 \times \cdots \times p_D}} \| \cA(\Theta) - b \|_2^2$, where $\Theta$ is a low-rank tensor, defined as $\Theta = \sum_{r=1}^{R} \theta_1^{(r)} \circ \cdots \circ \theta_D^{(r)}$, for vectors $\theta_d^{(r)} \in \mathbb{R}^{p_d}$ for all $r \in [R]$ and $d \in [D]$. %$R$ is small compared with $p_1,\ldots,p_D$, Here, $\circ$ denotes the outer product of vectors, and $\cA(\Theta)$ is a linear function on $\Theta$. This problem is motivated by the fact that the number of parameters in $\Theta$ is only $R \cdot \sum_{d=1}^D p_D$, which is significantly smaller than the $\prod_{d=1}^{D} p_d$ number of parameters in ordinary least squares regression. We consider the above CP decomposition model of tensors $\Theta$, as well as the Tucker decomposition. For both models we show how to apply data dimensionality reduction techniques based on {\it sparse} random projections $\Phi \in \RR^{m \times n}$, with $m \ll n$, to reduce the problem to a much smaller problem $\min_{\Theta} \|\Phi \cA(\Theta) - \Phi b\|_2^2$, for which $\|\Phi \cA(\Theta) - \Phi b\|_2^2 = (1 \pm \varepsilon) \| \cA(\Theta) - b \|_2^2$ holds simultaneously for all $\Theta$. We obtain a significantly smaller dimension and sparsity in the randomized linear mapping $\Phi$ than is possible for ordinary least squares regression. Finally, we give a number of numerical simulations supporting our theory.

#### More from the Same Authors

• 2021 Spotlight: Optimal Sketching for Trace Estimation »
Shuli Jiang · Hai Pham · David Woodruff · Richard Zhang
• 2021 Poster: Linear and Kernel Classification in the Streaming Model: Improved Bounds for Heavy Hitters »
Arvind Mahankali · David Woodruff
• 2021 Poster: Optimal Sketching for Trace Estimation »
Shuli Jiang · Hai Pham · David Woodruff · Richard Zhang
• 2021 Poster: Few-Shot Data-Driven Algorithms for Low Rank Approximation »
Piotr Indyk · Tal Wagner · David Woodruff
• 2020 Poster: Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian Processes »
Minh Hoang · Nghia Hoang · Hai Pham · David Woodruff
• 2020 Poster: Provable Online CP/PARAFAC Decomposition of a Structured Tensor via Dictionary Learning »
Sirisha Rambhatla · Xingguo Li · Jarvis Haupt
• 2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
• 2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare
• 2017 Poster: Approximation Algorithms for $\ell_0$-Low Rank Approximation »
Karl Bringmann · Pavel Kolev · David Woodruff
• 2017 Poster: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song
• 2017 Poster: Is Input Sparsity Time Possible for Kernel Low-Rank Approximation? »
Cameron Musco · David Woodruff
• 2017 Spotlight: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song
• 2017 Poster: On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning »
Xingguo Li · Lin Yang · Jason Ge · Jarvis Haupt · Tong Zhang · Tuo Zhao