Timezone: »
There has been a resurgence of interest in multiagent reinforcement learning (MARL), due partly to the recent success of deep neural networks. The simplest form of MARL is independent reinforcement learning (InRL), where each agent treats all of its experience as part of its (non stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents' policies during training, failing to sufficiently generalize during execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe a meta-algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game theoretic analysis to compute meta-strategies for policy selection. The meta-algorithm generalizes previous algorithms such as InRL, iterated best response, double oracle, and fictitious play. Then, we propose a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in three partially observable settings: gridworld coordination problems, emergent language games, and poker.
Author Information
Marc Lanctot (DeepMind)
Vinicius Zambaldi (Deepmind)
Audrunas Gruslys (Google DeepMind)
Angeliki Lazaridou (DeepMind)
Karl Tuyls (DeepMind)
Julien Perolat (DeepMind)
David Silver (DeepMind)
Thore Graepel (DeepMind)
More from the Same Authors
-
2020 Workshop: Talking to Strangers: Zero-Shot Emergent Communication »
Marie Ossenkopf · Angelos Filos · Abhinav Gupta · Michael Noukhovitch · Angeliki Lazaridou · Jakob Foerster · Kalesha Bullard · Rahma Chaabouni · Eugene Kharitonov · Roberto Dessì -
2020 Workshop: Cooperative AI »
Thore Graepel · Dario Amodei · Vincent Conitzer · Allan Dafoe · Gillian Hadfield · Eric Horvitz · Sarit Kraus · Kate Larson · Yoram Bachrach -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Learning to Play No-Press Diplomacy with Best Response Policy Iteration »
Thomas Anthony · Tom Eccles · Andrea Tacchetti · János Kramár · Ian Gemp · Thomas Hudson · Nicolas Porcel · Marc Lanctot · Julien Perolat · Richard Everett · Satinder Singh · Thore Graepel · Yoram Bachrach -
2020 Spotlight: Learning to Play No-Press Diplomacy with Best Response Policy Iteration »
Thomas Anthony · Tom Eccles · Andrea Tacchetti · János Kramár · Ian Gemp · Thomas Hudson · Nicolas Porcel · Marc Lanctot · Julien Perolat · Richard Everett · Satinder Singh · Thore Graepel · Yoram Bachrach -
2020 Poster: Real World Games Look Like Spinning Tops »
Wojciech Czarnecki · Gauthier Gidel · Brendan Tracey · Karl Tuyls · Shayegan Omidshafiei · David Balduzzi · Max Jaderberg -
2020 Poster: Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications »
Sarah Perrin · Julien Perolat · Mathieu Lauriere · Matthieu Geist · Romuald Elie · Olivier Pietquin -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 Poster: Biases for Emergent Communication in Multi-agent Reinforcement Learning »
Tom Eccles · Yoram Bachrach · Guy Lever · Angeliki Lazaridou · Thore Graepel -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2018 Workshop: Emergent Communication Workshop »
Jakob Foerster · Angeliki Lazaridou · Ryan Lowe · Igor Mordatch · Douwe Kiela · Kyunghyun Cho -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Actor-Critic Policy Optimization in Partially Observable Multiagent Environments »
Sriram Srinivasan · Marc Lanctot · Vinicius Zambaldi · Julien Perolat · Karl Tuyls · Remi Munos · Michael Bowling -
2018 Poster: Inequity aversion improves cooperation in intertemporal social dilemmas »
Edward Hughes · Joel Leibo · Matthew Phillips · Karl Tuyls · Edgar Dueñez-Guzman · Antonio García Castañeda · Iain Dunning · Tina Zhu · Kevin McKee · Raphael Koster · Heather Roff · Thore Graepel -
2018 Poster: Re-evaluating evaluation »
David Balduzzi · Karl Tuyls · Julien Perolat · Thore Graepel -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Symposium: Deep Reinforcement Learning »
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: A multi-agent reinforcement learning model of common-pool resource appropriation »
Julien Pérolat · Joel Leibo · Vinicius Zambaldi · Charles Beattie · Karl Tuyls · Thore Graepel -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2016 Workshop: Machine Intelligence @ NIPS »
Tomas Mikolov · Baroni Marco · Armand Joulin · Germán Kruszewski · Angeliki Lazaridou · Klemen Simonic -
2016 Workshop: Learning, Inference and Control of Multi-Agent Systems »
Thore Graepel · Marc Lanctot · Joel Leibo · Guy Lever · Janusz Marecki · Frans Oliehoek · Karl Tuyls · Vicky Holgate -
2016 Poster: Learning values across many orders of magnitude »
Hado van Hasselt · Arthur Guez · Arthur Guez · Matteo Hessel · Volodymyr Mnih · David Silver -
2016 Poster: Memory-Efficient Backpropagation Through Time »
Audrunas Gruslys · Remi Munos · Ivo Danihelka · Marc Lanctot · Alex Graves -
2015 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · John Schulman · Satinder Singh · David Silver -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa