Timezone: »
We propose a novel adaptive approximation approach for test-time resource-constrained prediction motivated by Mobile, IoT, health, security and other applications, where constraints in the form of computation, communication, latency and feature acquisition costs arise. We learn an adaptive low-cost system by training a gating and prediction model that limits utilization of a high-cost model to hard input instances and gates easy-to-handle input instances to a low-cost model. Our method is based on adaptively approximating the high-cost model in regions where low-cost models suffice for making highly accurate predictions. We pose an empirical loss minimization problem with cost constraints to jointly train gating and prediction models. On a number of benchmark datasets our method outperforms state-of-the-art achieving higher accuracy for the same cost.
Author Information
Feng Nan (Boston University)
Venkatesh Saligrama (Boston University)
More from the Same Authors
-
2021 Spotlight: Online Selective Classification with Limited Feedback »
Aditya Gangrade · Anil Kag · Ashok Cutkosky · Venkatesh Saligrama -
2021 : Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining and Consistency »
Samarth Mishra · Kate Saenko · Venkatesh Saligrama -
2022 Poster: How Transferable are Video Representations Based on Synthetic Data? »
Yo-whan Kim · Samarth Mishra · SouYoung Jin · Rameswar Panda · Hilde Kuehne · Leonid Karlinsky · Venkatesh Saligrama · Kate Saenko · Aude Oliva · Rogerio Feris -
2021 Poster: Online Selective Classification with Limited Feedback »
Aditya Gangrade · Anil Kag · Ashok Cutkosky · Venkatesh Saligrama -
2021 Poster: Bandit Quickest Changepoint Detection »
Aditya Gopalan · Braghadeesh Lakshminarayanan · Venkatesh Saligrama -
2020 Poster: Learning to Approximate a Bregman Divergence »
Ali Siahkamari · XIDE XIA · Venkatesh Saligrama · David Castañón · Brian Kulis -
2020 Poster: Online Algorithm for Unsupervised Sequential Selection with Contextual Information »
Arun Verma · Manjesh Kumar Hanawal · Csaba Szepesvari · Venkatesh Saligrama -
2020 Poster: Limits on Testing Structural Changes in Ising Models »
Aditya Gangrade · Bobak Nazer · Venkatesh Saligrama -
2019 Poster: Efficient Near-Optimal Testing of Community Changes in Balanced Stochastic Block Models »
Aditya Gangrade · Praveen Venkatesh · Bobak Nazer · Venkatesh Saligrama -
2019 Poster: Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices »
Don Dennis · Durmus Alp Emre Acar · Vikram Mandikal · Vinu Sankar Sadasivan · Venkatesh Saligrama · Harsha Vardhan Simhadri · Prateek Jain -
2016 Poster: Pruning Random Forests for Prediction on a Budget »
Feng Nan · Joseph Wang · Venkatesh Saligrama -
2016 Poster: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings »
Tolga Bolukbasi · Kai-Wei Chang · James Y Zou · Venkatesh Saligrama · Adam T Kalai -
2015 Poster: Efficient Learning by Directed Acyclic Graph For Resource Constrained Prediction »
Joseph Wang · Kirill Trapeznikov · Venkatesh Saligrama -
2014 Poster: Efficient Minimax Signal Detection on Graphs »
Jing Qian · Venkatesh Saligrama -
2012 Poster: Local Supervised Learning through Space Partitioning »
Joseph Wang · Venkatesh Saligrama -
2010 Poster: Probabilistic Belief Revision with Structural Constraints »
Peter B Jones · Venkatesh Saligrama · Sanjoy K Mitter -
2009 Poster: Anomaly Detection with Score functions based on Nearest Neighbor Graphs »
Manqi Zhao · Venkatesh Saligrama -
2009 Spotlight: Anomaly Detection with Score functions based on Nearest Neighbor Graphs »
Manqi Zhao · Venkatesh Saligrama