Timezone: »
Poster
Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions
Maria-Florina Balcan · Hongyang Zhang
We provide new results for noise-tolerant and sample-efficient learning algorithms under $s$-concave distributions. The new class of $s$-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and $t$ distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown about the geometry of this class of distributions and their applications in the context of learning. The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passively learning of intersections of halfspaces. Our analysis of geometric properties of $s$-concave distributions might be of independent interest to optimization more broadly.
Author Information
Maria-Florina Balcan (Carnegie Mellon University)
Hongyang Zhang (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: Maximizing Revenue under Market Shrinkage and Market Uncertainty »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2021 Poster: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2021 Oral: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2019 Poster: Envy-Free Classification »
Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia -
2019 Poster: Efficient Symmetric Norm Regression via Linear Sketching »
Zhao Song · Ruosong Wang · Lin Yang · Hongyang Zhang · Peilin Zhong -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2019 Poster: Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation »
Chen Dan · Hong Wang · Hongyang Zhang · Yuchen Zhou · Pradeep Ravikumar -
2018 Poster: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Spotlight: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2017 : Invited Talk: Sample and Computationally Efficient Active Learning Algorithms »
Maria-Florina Balcan -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2016 Poster: Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Sample Complexity of Automated Mechanism Design »
Maria-Florina Balcan · Tuomas Sandholm · Ellen Vitercik