Timezone: »
Poster
Online Learning for Multivariate Hawkes Processes
Yingxiang Yang · Jalal Etesami · Niao He · Negar Kiyavash
We develop a nonparametric and online learning algorithm that estimates the triggering functions of a multivariate Hawkes process (MHP). The approach we take approximates the triggering function $f_{i,j}(t)$ by functions in a reproducing kernel Hilbert space (RKHS), and maximizes a time-discretized version of the log-likelihood, with Tikhonov regularization. Theoretically, our algorithm achieves an $\calO(\log T)$ regret bound. Numerical results show that our algorithm offers a competing performance to that of the nonparametric batch learning algorithm, with a run time comparable to the parametric online learning algorithm.
Author Information
Yingxiang Yang (University of Illinois at Urbana Champaign)
Jalal Etesami (UIUC)
Niao He (UIUC)
Negar Kiyavash (Georgia Tech)
More from the Same Authors
-
2020 Poster: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2020 Spotlight: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2019 Workshop: Bridging Game Theory and Deep Learning »
Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien -
2019 Workshop: The Optimization Foundations of Reinforcement Learning »
Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Learning Positive Functions with Pseudo Mirror Descent »
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He -
2019 Spotlight: Learning Positive Functions with Pseudo Mirror Descent »
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He -
2018 Poster: Multi-domain Causal Structure Learning in Linear Systems »
AmirEmad Ghassami · Negar Kiyavash · Biwei Huang · Kun Zhang -
2018 Poster: Coupled Variational Bayes via Optimization Embedding »
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song -
2018 Poster: Predictive Approximate Bayesian Computation via Saddle Points »
Yingxiang Yang · Bo Dai · Negar Kiyavash · Niao He -
2018 Poster: Quadratic Decomposable Submodular Function Minimization »
Pan Li · Niao He · Olgica Milenkovic -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang -
2016 Workshop: OPT 2016: Optimization for Machine Learning »
Suvrit Sra · Francis Bach · Sashank J. Reddi · Niao He