Polynomial time algorithms for dual volume sampling
Chengtao Li · Stefanie Jegelka · Suvrit Sra

Mon Dec 4th 06:30 -- 10:30 PM @ Pacific Ballroom #160 #None

We study dual volume sampling, a method for selecting k columns from an n*m short and wide matrix (n <= k <= m) such that the probability of selection is proportional to the volume spanned by the rows of the induced submatrix. This method was proposed by Avron and Boutsidis (2013), who showed it to be a promising method for column subset selection and its multiple applications. However, its wider adoption has been hampered by the lack of polynomial time sampling algorithms. We remove this hindrance by developing an exact (randomized) polynomial time sampling algorithm as well as its derandomization. Thereafter, we study dual volume sampling via the theory of real stable polynomials and prove that its distribution satisfies the “Strong Rayleigh” property. This result has numerous consequences, including a provably fast-mixing Markov chain sampler that makes dual volume sampling much more attractive to practitioners. This sampler is closely related to classical algorithms for popular experimental design methods that are to date lacking theoretical analysis but are known to empirically work well.

Author Information

Chengtao Li (MIT)

I'm a 4-th year PhD student at MIT working with Stefanie Jegelka and Suvrit Sra. I work in the field of machine learning and am broadly interested in generative models, approximate inference, large-scale machine learning, Markov chains and mixing times, matrix approximations, kernel methods and probabilistic numerics.

Stefanie Jegelka (MIT)

Stefanie Jegelka is an X-Consortium Career Development Assistant Professor in the Department of EECS at MIT. She is a member of the Computer Science and AI Lab (CSAIL), the Center for Statistics and an affiliate of the Institute for Data, Systems and Society and the Operations Research Center. Before joining MIT, she was a postdoctoral researcher at UC Berkeley, and obtained her PhD from ETH Zurich and the Max Planck Institute for Intelligent Systems. Stefanie has received a Sloan Research Fellowship, an NSF CAREER Award, a DARPA Young Faculty Award, the German Pattern Recognition Award and a Best Paper Award at the International Conference for Machine Learning (ICML). Her research interests span the theory and practice of algorithmic machine learning.

Suvrit Sra (MIT)

Suvrit Sra is a Research Faculty at the Laboratory for Information and Decision Systems (LIDS) at Massachusetts Institute of Technology (MIT). He obtained his PhD in Computer Science from the University of Texas at Austin in 2007. Before moving to MIT, he was a Senior Research Scientist at the Max Planck Institute for Intelligent Systems, in Tübingen, Germany. He has also held visiting faculty positions at UC Berkeley (EECS) and Carnegie Mellon University (Machine Learning Department) during 2013-2014. His research is dedicated to bridging a number of mathematical areas such as metric geometry, matrix analysis, convex analysis, probability theory, and optimization with machine learning; more broadly, his work involves algorithmically grounded topics within engineering and science. He has been a co-chair for OPT2008-2015, NIPS workshops on "Optimization for Machine Learning," and has also edited a volume of the same name (MIT Press, 2011).

More from the Same Authors