Timezone: »

Local Aggregative Games
Vikas Garg · Tommi Jaakkola

Wed Dec 06 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #43 #None

Aggregative games provide a rich abstraction to model strategic multi-agent interactions. We focus on learning local aggregative games, where the payoff of each player is a function of its own action and the aggregate behavior of its neighbors in a connected digraph. We show the existence of a pure strategy epsilon-Nash equilibrium in such games when the payoff functions are convex or sub-modular. We prove an information theoretic lower bound, in a value oracle model, on approximating the structure of the digraph with non-negative monotone sub-modular cost functions on the edge set cardinality. We also introduce gamma-aggregative games that generalize local aggregative games, and admit epsilon-Nash equilibrium that are stable with respect to small changes in some specified graph property. Moreover, we provide estimation algorithms for the game theoretic model that can meaningfully recover the underlying structure and payoff functions from real voting data.

Author Information

Vikas Garg (MIT)
Tommi Jaakkola (MIT)

Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.

More from the Same Authors