Timezone: »
A powerful approach for understanding neural population dynamics is to extract low-dimensional trajectories from population recordings using dimensionality reduction methods. Current approaches for dimensionality reduction on neural data are limited to single population recordings, and can not identify dynamics embedded across multiple measurements. We propose an approach for extracting low-dimensional dynamics from multiple, sequential recordings. Our algorithm scales to data comprising millions of observed dimensions, making it possible to access dynamics distributed across large populations or multiple brain areas. Building on subspace-identification approaches for dynamical systems, we perform parameter estimation by minimizing a moment-matching objective using a scalable stochastic gradient descent algorithm: The model is optimized to predict temporal covariations across neurons and across time. We show how this approach naturally handles missing data and multiple partial recordings, and can identify dynamics and predict correlations even in the presence of severe subsampling and small overlap between recordings. We demonstrate the effectiveness of the approach both on simulated data and a whole-brain larval zebrafish imaging dataset.
Author Information
Marcel Nonnenmacher (Research center caesar)
Srini C Turaga (Janelia Research Campus, Howard Hughes Medical Institute)
Jakob H Macke (research center caesar, an associate of the Max Planck Society)
More from the Same Authors
-
2019 Poster: Intrinsic dimension of data representations in deep neural networks »
Alessio Ansuini · Alessandro Laio · Jakob H Macke · Davide Zoccolan -
2017 Spotlight: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Oral: Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit »
Laurence Aitchison · Lloyd Russell · Adam Packer · Jinyao Yan · Philippe Castonguay · Michael Hausser · Srinivas C Turaga -
2017 Poster: Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit »
Laurence Aitchison · Lloyd Russell · Adam Packer · Jinyao Yan · Philippe Castonguay · Michael Hausser · Srinivas C Turaga -
2017 Poster: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Flexible statistical inference for mechanistic models of neural dynamics »
Jan-Matthis Lueckmann · Pedro Goncalves · Giacomo Bassetto · Kaan Öcal · Marcel Nonnenmacher · Jakob H Macke -
2016 Workshop: Connectomics II: Opportunities and Challenges for Machine Learning »
Viren Jain · Srinivas C Turaga -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 Workshop: Statistical Methods for Understanding Neural Systems »
Alyson Fletcher · Jakob H Macke · Ryan Adams · Jascha Sohl-Dickstein -
2015 Poster: Unlocking neural population non-stationarities using hierarchical dynamics models »
Mijung Park · Gergo Bohner · Jakob H Macke -
2014 Workshop: Large scale optical physiology: From data-acquisition to models of neural coding »
Il Memming Park · Jakob H Macke · Ferran Diego Andilla · Eftychios Pnevmatikakis · Jeremy Freeman -
2014 Poster: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Spotlight: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Poster: Low-dimensional models of neural population activity in sensory cortical circuits »
Evan W Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2013 Spotlight: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Learning to Agglomerate Superpixel Hierarchies »
Viren Jain · Srinivas C Turaga · K Briggman · Moritz N Helmstaedter · Winfried Denk · H. Sebastian Seung -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2009 Poster: Maximin affinity learning of image segmentation »
Srinivas C Turaga · K Briggman · Moritz N Helmstaedter · Winfried Denk · H. Sebastian Seung -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann